28 December 2025

On Invariance (1990-1999)

"Axiomatic theories of choice introduce preference as a primitive relation, which is interpreted through specific empirical procedures such as choice or pricing. Models of rational choice assume a principle of procedure invariance, which requires strategically equivalent methods of elicitation to yield the same preference order." (Amos Tversky et al, "The Causes of Preference Reversal", The American Economic Review Vol. 80 (1), 1990)

"Scaling invariance results from the fact that homogeneous power laws lack natural scales; they do not harbor a characteristic unit (such as a unit length, a unit time, or a unit mass). Such laws are therefore also said to be scale-free or, somewhat paradoxically, 'true on all scales'. Of course, this is strictly true only for our mathematical models. A real spring will not expand linearly on all scales; it will eventually break, at some characteristic dilation length. And even Newton's law of gravitation, once properly quantized, will no doubt sprout a characteristic length." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"The unifying concept underlying fractals, chaos, and power laws is self-similarity. Self-similarity, or invariance against changes in scale or size, is an attribute of many laws of nature and innumerable phenomena in the world around us. Self-similarity is, in fact, one of the decisive symmetries that shape our universe and our efforts to comprehend it." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"Homology theory introduces a new connection between invariants of manifolds. Continuing the 'physical' analogy, we say that a homology theory studies the intrinsic structure of a manifold by breaking it into a system of portions arranged simply, or, more precisely, in a standard way. Then, given certain rules for glueing the portions together, the theory obtains the whole manifold. The main problem consists in proving the resultant geometric quantities that are independent of the decomposition and glueing (i.e., proving the topological invariance of the characteristics)." (Michael I Monastyrsky, "Topology of Gauge Fields and Condensed Matter", 1993)

"It would be preferable to have some property or quantity that could indisputably differentiate between two surfaces. This, however, requires more sophisticated mathematics. [...] we introduce the simplest topological invariant: the Euler characteristic. This is the first step in the algebraization of topology: finding something computable to describe the shape of a space." (L Christine Kinsey. "Topology of Surfaces", 1993)

"The Euler characteristic can be used to shorten the process, but for some cases a lengthy procedure is still necessary. Neither of these options provide a clear accounting for the ways in which the surfaces vary, e.g., which enclose cavities, which are non-orientable, etc., and neither can be completely generalized to higher-dimensional manifolds. Ideally, one would like some sort of algebraic invariant or computable quantity that would codify a lot of information: how many connected pieces a space has, how the gluing directions work, whether the surface is orientable or not, etc. The euler characteristic is a first attempt at this and has the advantage of being quite easy to compute, but it fails to distinguish between the torus and the Klein bottle, which both have x = 0." (L Christine Kinsey, "Topology of Surfaces", 1993)

"The Euler characteristic is strikingly easy to compute, and it really seems odd that it should be a topological invariant. After all, it is computed from a cell decomposition, and it is very easy to come up with a lot of different complexes on a single surface, all with varying numbers of faces, edges, and vertices. But somehow by taking the alternating sum, one arrives at a quantity which depends only on the underlying shape and not on the particular complex." (L Christine Kinsey,"Topology of Surfaces", 1993)

"Symmetry is basically a geometrical concept. Mathematically it can be defined as the invariance of geometrical patterns under certain operations. But when abstracted, the concept applies to all sorts of situations. It is one of the ways by which the human mind recognizes order in nature. In this sense symmetry need not be perfect to be meaningful. Even an approximate symmetry attracts one's attention, and makes one wonder if there is some deep reason behind it." (Eguchi Tohru & ‎K Nishijima ," Broken Symmetry: Selected Papers Of Y Nambu", 1995)

"The cliché became, erroneously, 'everything is relative'; whereas the point is that out of the vast flux one can distill the very opposite: 'some things are invariant'." (Gerald Holton, "Einstein, History, and Other Passions: The Rebellion Against Science at the End of the Twentieth Century", 1996)

"How deep truths can be defined as invariants – things that do not change no matter what; how invariants are defined by symmetries, which in turn define which properties of nature are conserved, no matter what. These are the selfsame symmetries that appeal to the senses in art and music and natural forms like snowflakes and galaxies. The fundamental truths are based on symmetry, and there’s a deep kind of beauty in that." (K C Cole, "The Universe and the Teacup: The Mathematics of Truth and Beauty", 1997)

"Homology theory studies properties of manifolds by decomposing them into simpler parts. The structure of these parts can be investigated easily by introducing algebraic characteristics associated with these decompositions. The main difficulty lies in proving that the corresponding characteristics of the decomposition, in fact, do not depend on the particular choice of the decomposition but are rather a topological invariant of the manifold itself." (Michael I Monastyrsky, "Riemann, Topology, and Physics", 1999)

"Cybernetics is the science of effective organization, of control and communication in animals and machines. It is the art of steersmanship, of regulation and stability. The concern here is with function, not construction, in providing regular and reproducible behaviour in the presence of disturbances. Here the emphasis is on families of solutions, ways of arranging matters that can apply to all forms of systems, whatever the material or design employed. [...] This science concerns the effects of inputs on outputs, but in the sense that the output state is desired to be constant or predictable – we wish the system to maintain an equilibrium state. It is applicable mostly to complex systems and to coupled systems, and uses the concepts of feedback and transformations (mappings from input to output) to effect the desired invariance or stability in the result." (Chris Lucas, "Cybernetics and Stochastic Systems", 1999)

"One of the basic tasks of topology is to learn to distinguish nonhomeomorphic figures. To this end one introduces the class of invariant quantities that do not change under homeomorphic transformations of a given figure. The study of the invariance of topological spaces is connected with the solution of a whole series of complex questions: Can one describe a class of invariants of a given manifold? Is there a set of integral invariants that fully characterizes the topological type of a manifold? and so forth." (Michael I Monastyrsky, "Riemann, Topology, and Physics", 1999)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Invariance (1990-1999)

"Axiomatic theories of choice introduce preference as a primitive relation, which is interpreted through specific empirical procedures ...