28 December 2025

Willem de Sitter - Collected Quotes

"In electromagnetism [...] the law of the inverse square had been supreme, but, as a consequence of the work of Faraday and Maxwell, it was superseded by the field. And the same change took place in the theory of gravitation. By and by the material particles, electrically charged bodies, and magnets which are the things that we actually observe come to be looked upon only as 'singularities' in the field. So far this transformation from the force to the potential, from the action at a distance to the field, is only a purely mathematical operation." (Willem de Sitter,"Kosmos", 1932)

"In Newton's system of mechanics […] there is an absolute space and an absolute time. In Einstein's theory time and space are interwoven, and the way in which they are interwoven depends on the observer. Instead of three plus one we have four dimensions." (Willem de Sitter, "Relativity and Modern Theories of the Universe", Kosmos, 1932)

"Is the density anywhere near that corresponding to the static universe, or is it so small that we can consider the empty universe as a good approximation?" (Willem de Sitter, "Kosmos", 1932)

"The sequence of different positions of the same particle at different times forms a one-dimensional continuum in the four-dimensional space-time, which is called the world-line of the particle. All that physical experiments or observations can teach us refers to intersections of world-lines of different material particles, light-pulsations, etc., and how the course of the world-line is between these points of intersection is entirely irrelevant and outside the domain of physics. The system of intersecting world-lines can thus be twisted about at will, so long as no points of intersection are destroyed or created, and their order is not changed. It follows that the equations expressing the physical laws must be invariant for arbitrary transformations." (Willem de Sitter, "Kosmos", 1932)

"There is another side to the theory of relativity. [...]×the development of science is in the direction to make it less subjective, to separate more and more in the observed facts that which belongs to the reality behind the phenomena, the absolute, from the subjective element, which is introduced by the observer, the relative. Einstein's theory is a great step in that direction. We can say that the theory of relativity is intended to remove entirely the relative and exhibit the pure absolute." (Willem de Sitter, "Relativity and Modern Theories of the Universe", Kosmos, 1932)

"Two points should be specially emphasized in connection with the general theory of relativity. First, it is a purely physical theory, invented to explain empirical physical facts, especially the identity of gravitational and inertial mass, and to coordinate and harmonize different chapters of physical theory, especially mechanics and electromagnetic theory. It has nothing metaphysical about it. Its importance from a metaphysical or philosophical point of view is that it aids us to distinguish in the observed phenomena what is absolute, or due to the reality behind the phenomena, from what is relative, i.e. due to the observer.S econd, it is a pure generalization, or abstraction, like Newton's system of mechanics and law of gravitation. It contains no hypothesis, as contrasted with the atomic theory or the theory of quanta, which are based on hypothesis. It may be considered as the logical sequence and completion of Newton's Principia. The science of mechanics was founded by Archimedes, who had a clear conception of the relativity of motion, and may be called the first relativist. Galileo, who was inspired by the reading of the works of Archimedes, took the subject up where his great predecessor had left it. His fundamental discovery is the law of inertia, which is the backbone of Newton's classical system of mechanics, and retains the same central position in Einstein's relativistic system. Thus one continuous line of thought can be traced through the development of our insight into the mechanical processes of nature... characterized by the sequence [...] Archimedes, Galileo, Newton, Einstein." (Willem de Sitter, "The Astronomical Aspect of the Theory of Relativity", 1933)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

Willem de Sitter - Collected Quotes

"In electromagnetism [...] the law of the inverse square had been supreme, but, as a consequence of the work of Faraday and Maxwell, it...