29 December 2025

On Systems: On Nonlinearity (2010-)

"All forms of complex causation, and especially nonlinear transformations, admittedly stack the deck against prediction. Linear describes an outcome produced by one or more variables where the effect is additive. Any other interaction is nonlinear. This would include outcomes that involve step functions or phase transitions. The hard sciences routinely describe nonlinear phenomena. Making predictions about them becomes increasingly problematic when multiple variables are involved that have complex interactions. Some simple nonlinear systems can quickly become unpredictable when small variations in their inputs are introduced." (Richard N Lebow, "Forbidden Fruit: Counterfactuals and International Relations", 2010)

"Most systems in nature are inherently nonlinear and can only be described by nonlinear equations, which are difficult to solve in a closed form. Non-linear systems give rise to interesting phenomena such as chaos, complexity, emergence and self-organization. One of the characteristics of non-linear systems is that a small change in the initial conditions can give rise to complex and significant changes throughout the system. This property of a non-linear system such as the weather is known as the butterfly effect where it is purported that a butterfly flapping its wings in Japan can give rise to a tornado in Kansas. This unpredictable behaviour of nonlinear dynamical systems, i.e. its extreme sensitivity to initial conditions, seems to be random and is therefore referred to as chaos. This chaotic and seemingly random behaviour occurs for non-linear deterministic system in which effects can be linked to causes but cannot be predicted ahead of time." (Robert K Logan, "The Poetry of Physics and The Physics of Poetry", 2010)

"Complex systems are full of interdependencies - hard to detect - and nonlinear responses." (Nassim N Taleb, "Antifragile: Things That Gain from Disorder", 2012)

"Where simplifications fail, causing the most damage, is when something nonlinear is simplified with the linear as a substitute. That is the most common Procrustean bed." (Nassim N Taleb, "Antifragile: Things that Gain from Disorder", 2012)

"Complex systems defy intuitive solutions. Even a third-order, linear differential equation is unsolvable by inspection. Yet, important situations in management, economics, medicine, and social behavior usually lose reality if simplified to less than fifth-order nonlinear dynamic systems. Attempts to deal with nonlinear dynamic systems using ordinary processes of description and debate lead to internal inconsistencies. Underlying assumptions may have been left unclear and contradictory, and mental models are often logically incomplete. Resulting behavior is likely to be contrary to that implied by the assumptions being made about' underlying system structure and governing policies." (Jay W Forrester, "Modeling for What Purpose?", The Systems Thinker Vol. 24 (2), 2013)

"System dynamics models have little impact unless they change the way people perceive a situation. A model must help to organize information in a more understandable way. A model should link the past to the present by showing how present conditions arose, and extend the present into persuasive alternative futures under a variety of scenarios determined by policy alternatives. In other words, a system dynamics model, if it is to be effective, must communicate with and modify the prior mental models. Only people's beliefs - that is, their mental models - will determine action. Computer models must relate to and improve mental models if the computer models are to fill an effective role." (Jay W. Forrester, "Modeling for What Purpose?", The Systems Thinker Vol. 24 (2), 2013)

"Even more important is the way complex systems seem to strike a balance between the need for order and the imperative for change. Complex systems tend to locate themselves at a place we call 'the edge of chaos'. We imagine the edge of chaos as a place where there is enough innovation to keep a living system vibrant, and enough stability to keep it from collapsing into anarchy. It is a zone of conflict and upheaval, where the old and new are constantly at war. Finding the balance point must be a delicate matter - if a living system drifts too close, it risks falling over into incoherence and dissolution; but if the system moves too far away from the edge, it becomes rigid, frozen, totalitarian. Both conditions lead to extinction. […] Only at the edge of chaos can complex systems flourish. This threshold line, that edge between anarchy and frozen rigidity, is not a like a fence line, it is a fractal line; it possesses nonlinearity." (Stephen H Buhner, "Plant Intelligence and the Imaginal Realm: Beyond the Doors of Perception into the Dreaming of Earth", 2014)

"There is no linear additive process that, if all the parts are taken together, can be understood to create the total system that occurs at the moment of self-organization; it is not a quantity that comes into being. It is not predictable in its shape or subsequent behavior or its subsequent qualities. There is a nonlinear quality that comes into being at the moment of synchronicity." (Stephen H Buhner, "Plant Intelligence and the Imaginal Realm: Beyond the Doors of Perception into the Dreaming of Earth", 2014)

"To remedy chaotic situations requires a chaotic approach, one that is non-linear, constantly morphing, and continually sharpening its competitive edge with recurring feedback loops that build upon past experiences and lessons learned. Improvement cannot be sustained without reflection. Chaos arises from myriad sources that stem from two origins: internal chaos rising within you, and external chaos being imposed upon you by the environment. The result of this push/pull effect is the disequilibrium [...]." (Jeff Boss, "Navigating Chaos: How to Find Certainty in Uncertain Situations", 2015)

"Why are nonlinear systems so much harder to analyze than linear ones? The essential difference is that linear systems can be broken down into parts. Then each part can be solved separately and finally recombined to get the answer. This idea allows a fantastic simplification of complex problems, and underlies such methods as normal modes, Laplace transforms, superposition arguments, and Fourier analysis. In this sense, a linear system is precisely equal to the sum of its parts. But many things in nature don’t act this way. Whenever parts of a system interfere, or cooperate, or compete, there are nonlinear interactions going on. Most of everyday life is nonlinear, and the principle of superposition fails spectacularly." (Steven H Strogatz, "Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering", 2015)

"Although cascading failures may appear random and unpredictable, they follow reproducible laws that can be quantified and even predicted using the tools of network science. First, to avoid damaging cascades, we must understand the structure of the network on which the cascade propagates. Second, we must be able to model the dynamical processes taking place on these networks, like the flow of electricity. Finally, we need to uncover how the interplay between the network structure and dynamics affects the robustness of the whole system." (Albert-László Barabási, "Network Science", 2016)

"The goal of a system dynamics approach is to understand how a dynamic pattern of behaviour is generated by a system and to find leverage points within the system structure that have the potential to change the problematic trend to a more desirable one. The key steps in a system dynamics approach are identifying one or more trends that characterise the problem, describing the structure of the system generating the behaviour and finding and testing leverage points in the system to change the problematic behaviour. System dynamics is an appropriate modelling approach for sustainability questions because of the long-term perspective and feedback dynamics inherent in such questions." (Bilash K Bala et al, "System Dynamics: Modelling and Simulation", 2017)

"Exponentially growing systems are prevalent in nature, spanning all scales from biochemical reaction networks in single cells to food webs of ecosystems. How exponential growth emerges in nonlinear systems is mathematically unclear. […] The emergence of exponential growth from a multivariable nonlinear network is not mathematically intuitive. This indicates that the network structure and the flux functions of the modeled system must be subjected to constraints to result in long-term exponential dynamics." (Wei-Hsiang Lin et al, "Origin of exponential growth in nonlinear reaction networks", PNAS 117 (45), 2020)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

J Willard Gibbs - Collected Quotes

"Although geometrical representations of propositions in the thermodynamics of fluids are in general use and have done good service in ...