"Certainly, if a system moves under the action of given forces and its initial conditions have given values in the mathematical sense, its future motion and behavior are exactly known. But, in astronomical problems, the situation is quite different: the constants defining the motion are only physically known, that is with some errors; their sizes get reduced along the progresses of our observing devices, but these errors can never completely vanish." (Jacques Hadamard, "Les surfaces à courbures opposées et leurs lignes géodésiques", Journal de mathématiques pures et appliquées 5e (4), 1898)
"Every part of the system is so related to every other part that any change in one aspect results in dynamic changes in all other parts of the total system." (Arthur D Hall & Robert E Fagen, "Definition of System", General Systems Vol. 1, 1956)
"For understanding the general principles of dynamic systems, therefore, the concept of feedback is inadequate in itself. What is important is that complex systems, richly cross-connected internally, have complex behaviours, and that these behaviours can be goal-seeking in complex patterns." (W Ross Ashby, "An Introduction to Cybernetics", 1956)
"A deterministic system is one in which the parts interact in a perfectly predictable way. There is never any room for doubt: given a last state of the system and the programme of information by defining its dynamic network, it is always possible to predict, without any risk of error, its succeeding state. A probabilistic system, on the other hand, is one about which no precisely detailed prediction can be given. The system may be studied intently, and it may become more and more possible to say what it is likely to do in any given circumstances. But the system simply is not predetermined, and a prediction affecting it can never escape from the logical limitations of the probabilities in which terms alone its behaviour can be described." (Stafford Beer, "Cybernetics and Management", 1959)
"It will be useful if we base the arbitrary classification of systems on two distinct criteria. One obviously valuable criterion is that of the system's complexity. Adopting this criterion, it will be possible to discuss systems according to a three-fold scheme. The least complex with which we shall be concerned may be called: simple but dynamic. A system which is not simple, but which has become highly elaborate and is richly interconnected, will be called: complex but describable. Thirdly, we may discuss systems which have be- come so complicated that, while they may still be designated as complex, they cannot be described in a precise and detailed fashion. Such systems will be called: exceedingly complex." (Stafford Beer, "Cybernetics and Management", 1959)
No comments:
Post a Comment