29 December 2025

On Differential Equations (1925-1949)

"It seems to be the impression among students that mathematical physics consists in deriving a large number of partial differential equations and then solving them, individually, by an assortment of special mutually unrelated devices. It has not been made clear that there is any underlying unity of method and one has often been left entirely in the dark as to what first suggested a particular device to the mind of its inventor." (Arthur G Webster, "Partial Differential Equations of Mathematical Physics", 1927)

"Scientific laws, when we have reason to think them accurate, are different in form from the common-sense rules which have exceptions: they are always, at least in physics, either differential equations or statistical averages." (Bertrand Russell, "The Analysis of Matter", 1927)

"Men have fallen in love with statues and pictures. I find it easier to imagine a man falling in love with a differential equation, and I am inclined to think that some mathematicians have done so. Even in a nonmathematician like myself, some differential equations evoke fairly violent physical sensations to those described by Sappho and Catallus when viewing their mistresses. Personally, I obtain an even greater 'kick' from finite difference equations, which are perhaps more like those which an up-to-date materialist would use to describe human behavior." (John B S Haldane, "The Inequality of Man and Other Essays", 1932)

"The method of successive approximations is often applied to proving existence of solutions to various classes of functional equations; moreover, the proof of convergence of these approximations leans on the fact that the equation under study may be majorised by another equation of a simple kind. Similar proofs may be encountered in the theory of infinitely many simultaneous linear equations and in the theory of integral and differential equations. Consideration of semiordered spaces and operations between them enables us to easily develop a complete theory of such functional equations in abstract form." (Leonid V Kantorovich, "On one class of functional equations", 1936)

"Matter-of-fact is an abstraction, arrived at by confining thought to purely formal relations which then masquerade as the final reality. This is why science, in its perfection, relapses into the study of differential equations. The concrete world has slipped through the meshes of the scientific net." (Alfred N Whitehead, "Modes of Thought", 1938)

"The emphasis on mathematical methods seems to be shifted more towards combinatorics and set theory - and away from the algorithm of differential equations which dominates mathematical physics." (John von Neumann & Oskar Morgenstern, "Theory of Games and Economic Behavior", 1944

"In order to solve a differential equation you look at it till a solution occurs to you." (George Pólya, "How to Solve It: A New Aspect of Mathematical Method", 1945)

"The emphasis on mathematical methods seems to be shifted more towards combinatorics and set theory - and away from the algorithm of differential equations which dominates mathematical physics." (John von Neumann & Oskar Morgenstern, "Theory of Games and Economic Behavior", 1947)

"For at least two centuries, solving differential equations to answer physical problems has been a main job for mathematicians. Mathematics is supposed to be logical, and perhaps you would think this would be easy. But mathematicians have been unable to solve a great many differential equations; only here and there, as if by accident, could they solve one. So they often wished for better methods in order to make the job easier." (Edmund C Berkeley, "Giant Brains or Machines that Think", 1949)

"If God has made the world a perfect mechanism, He has at least conceded so much to our imperfect intellect that in order to predict little parts of it, we need not solve innumerable differential equations, but can use dice with fair success." (Max Born, "Albert Einstein: Philosopher-Scientist", 1949)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

Sadri Hassani - Collected Quotes

"Coordinates and vectors - in one form or another - are two of the most fundamental concepts in any discussion of mathematics as applie...