24 December 2025

On Continuity (1800-1899)

"[…] a function of the variable x will be continuous between two limits a and b of this variable if between two limits the function has always a value which is unique and finite, in such a way that an infinitely small increment of this variable always produces an infinnitely small increment of the function itself." (Augustin-Louis Cauchy, "Mémoire sur les fonctions continues" ["Memoir on continuous functions"], 1844)

"It is very desirable to have a word to express the Availability for work of the heat in a given magazine; a term for that possession, the waste of which is called Dissipation. Unfortunately the excellent word Entropy, which Clausius has introduced in this connexion, is applied by him to the negative of the idea we most naturally wish to express. It would only confuse the student if we were to endeavour to invent another term for our purpose. But the necessity for some such term will be obvious from the beautiful examples which follow. And we take the liberty of using the term Entropy in this altered sense [...] The entropy of the universe tends continually to zero." (Peter G Tait, "Sketch Of Thermodynamics", 1868)

"I hold: 1) that small portions of space are, in fact, of a nature analogous to little hills on a surface that is on the average fiat; namely, that the ordinary laws of geometry are not valid in them; 2) that this property of being curved or distorted is constantly being passed on from one portion of space to another after the manner of a wave; 3) that this variation of the curvature of space is what really happens in the phenomenon that we call the motion of matter, whether ponderable or ethereal; 4) that in the physical world nothing else takes place but this variation, subject (possibly) to the law of continuity." (William K Clifford, "On the Space Theory of Matter", [paper delivered before the Cambridge Philosophical Society, 1870)

"I find the essence of continuity [...] in the following principle: If all points of the straight line fall into two classes such that every point of the first class lies to the left of every point of the second class, then there exists one and only one point which produces this division of all points into these two classes, this severing of the straight line into two portions." (Richard Dedekind, "Stetigkeit und Irrationale Zahlen" ["Continuity and Irrational Numbers", 1872)

"The above comparison of the domain R of rational numbers with a straight line has led to the recognition of the existence of gaps, of a certain incompleteness or discontinuity of the former, while we ascribe to the straight line completeness, absence of gaps, or continuity. In what then does this continuity consist? Everything must depend on the answer to this question, and only through it shall we obtain a scientific basis for the investigation of all continuous domains." (Richard Dedekind,"Stetigkeit und irrationale Zahle", 1872) 

"The Infinite is often confounded with the Indefinite, but the two conceptions are diametrically opposed. Instead of being a quantity with unassigned yet assignable limits, the Infinite is not a quantity at all, since it neither admits of augmentation nor diminution, having no assignable limits; it is the operation of continuously withdrawing any limits that may have been assigned: the endless addition of new quantities to the old: the flux of continuity. The Infinite is no more a quantity than Zero is a quantity. If Zero is the sign of a vanished quantity, the Infinite is a sign of that continuity of Existence which has been ideally divided into discrete parts in the affixing of limits." (George H. Lewes, "Problems of Life and Mind", 1873)

"When we consider complex numbers and their geometrical representation, we leave the field of the original concept of quantity, as contained especially in the quantities of Euclidean geometry: its lines, surfaces and volumes. According to the old conception, length appears as something material which fills the straight line between its end points and at the same time prevents another thing from penetrating into its space by its rigidity. In adding quantities, we are therefore forced to place one quantity against another. Something similar holds for surfaces and solid contents. The introduction of negative quantities made a dent in this conception, and imaginary quantities made it completely impossible. Now all that matters is the point of origin and the end point; whether there is a continuous line between them, and if so which, appears to make no difference whatsoever; the idea of filling space has been completely lost. All that has remained is certain general properties of addition, which now emerge as the essential characteristic marks of quantity. The concept has thus gradually freed itself from intuition and made itself independent. This is quite unobjectionable, especially since its earlier intuitive character was at bottom mere appearance. Bounded straight lines and planes enclosed by curves can certainly be intuited, but what is quantitative about them, what is common to lengths and surfaces, escapes our intuition." (Gottlob Frege, "Methods of Calculation based on an Extension of the Concept of Quantity", 1874)

"And I also believe that some day we will succeed in 'arithmetizing' the whole content of these mathematical disciplines [algebra, analysis], i.e., in basing them exclusively upon the notion of number, taken in the most restricted sense, and thus in eliminating again the modifications and extensions of this notion [note: I mean here especially the addition of irrational and continuous magnitudes], which have mostly been motivated by applications to geometry and mechanics." (Leopold Kronecker, 1887)

"Again, most of the chief distinctions marked by economic terms are differences not of kind but of degree. At first sight they appear to be differences of kind, and to have sharp outlines which can be clearly marked out; but a more careful study has shown that there is no real breach of continuity. It is a remarkable fact that the progress of economics has discovered hardly any new real differences in kind, while it is continually resolving apparent differences in kind into differences in degree. We shall meet with many instances of the evil that may be done by attempting to draw broad, hard and fast lines of division, and to formulate definite propositions with regard to differences between things which nature has not separated by any such lines." (Alfred Marshall, "Principles of Economics", 1890)

"Time with its continuity logically involves some other kind of continuity than its own. Time, as the universal form of change, cannot exist unless there is something to undergo change, and to undergo a change continuous in time, there must be a continuity of changeable qualities." (Charles S Peirce, "The Law of Mind", 1892)

"Logic sometimes makes monsters. For half a century we have seen a mass of bizarre functions which appear to be forced to resemble as little as possible honest functions which serve some purpose. More of continuity, or less of continuity, more derivatives, and so forth. Indeed, from the point of view of logic, these strange functions are the most general; on the other hand those which one meets without searching for them, and which follow simple laws appear as a particular case which does not amount to more than a small corner. In former times when one invented a new function it was for a practical purpose; today one invents them purposely to show up defects in the reasoning of our fathers and one will deduce from them only that. If logic were the sole guide of the teacher, it would be necessary to begin with the most general functions, that is to say with the most bizarre. It is the beginner that would have to be set grappling with this teratologic museum." (Henri Poincaré, 1899)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Topology: On Gluing

"[…] under plane transformations, like those encountered in the arbitrary stretching of a rubber sheet, certain properties of the figur...