"A diagram is worth a thousand proofs." (Carl E Linderholm, “Mathematics Made Difficult”, 1971)
"In many cases a dull proof can be supplemented by a geometric analogue so simple and beautiful that the truth of a theorem is almost seen at a glance." (Martin Gardner, "Mathematical Games", Scientific American, 1973)
"Non-standard analysis frequently simplifies substantially the proofs, not only of elementary theorems, but also of deep results. This is true, e.g., also for the proof of the existence of invariant subspaces for compact operators, disregarding the improvement of the result; and it is true in an even higher degree in other cases. This state of affairs should prevent a rather common misinterpretation of non-standard analysis, namely the idea that it is some kind of extravagance or fad of mathematical logicians. Nothing could be farther from the truth. Rather, there are good reasons to believe that non-standard analysis, in some version or other, will be the analysis of the future." (Kurt Gödel, "Remark on Non-standard Analysis", 1974)
"The conception of the mental construction which is the fully analysed proof as being an infinite structure must, of course, be interpreted in the light of the intuitionist view that all infinity is potential infinity: the mental construction consists of a grasp of general principles according to which any finite segment of the proof could be explicitly constructed." (Michael Dummett, "The philosophical basis of intuitionistic logic", 1975)
"No theory ever agrees with all the facts in its domain, yet it is not always the theory that is to blame. Facts are constituted by older ideologies, and a clash between facts and theories may be proof of progress. It is also a first step in our attempt to find the principles implicit in familiar observational notions." (Paul K Feyerabend, "Against Method: Outline of an Anarchistic Theory of Knowledge", 1975)
“There is an infinite regress in proofs; therefore proofs do not prove. You should realize that proving is a game, to be played while you enjoy it and stopped when you get tired of it.” (Imre Lakatos, “Proofs and Refutations”, 1976)
"On the face of it there should be no disagreement about mathematical proof. Everybody looks enviously at the alleged unanimity of mathematicians; but in fact there is a considerable amount of controversy in mathematics. Pure mathematicians disown the proofs of applied mathematicians, while logicians in turn disavow those of pure mathematicians. Logicists disdain the proofs of formalists and some intuitionists dismiss with contempt the proofs of logicists and formalists." (Imre Lakatos, "Mathematics, Science and Epistemology" Vol. 2, 1978)
"No theory ever agrees with all the facts in its domain, yet it is not always the theory that is to blame. Facts are constituted by older ideologies, and a clash between facts and theories may be proof of progress. It is also a first step in our attempt to find the principles implicit in familiar observational notions." (Paul K Feyerabend, "Against Method: Outline of an Anarchistic Theory of Knowledge", 1975)
“There is an infinite regress in proofs; therefore proofs do not prove. You should realize that proving is a game, to be played while you enjoy it and stopped when you get tired of it.” (Imre Lakatos, “Proofs and Refutations”, 1976)
"On the face of it there should be no disagreement about mathematical proof. Everybody looks enviously at the alleged unanimity of mathematicians; but in fact there is a considerable amount of controversy in mathematics. Pure mathematicians disown the proofs of applied mathematicians, while logicians in turn disavow those of pure mathematicians. Logicists disdain the proofs of formalists and some intuitionists dismiss with contempt the proofs of logicists and formalists." (Imre Lakatos, "Mathematics, Science and Epistemology" Vol. 2, 1978)
"A proof is a construction that can be looked over, reviewed, verified by a rational agent. We often say that a proof must be perspicuous or capable of being checked by hand. It is an exhibition, a derivation of the conclusion, and it needs nothing outside itself to be convincing. The mathematician surveys the proof in its entirety and thereby comes to know the conclusion." (Thomas Tymoczko, "The Four Color Problems", Journal of Philosophy , Vol. 76, 1979)
No comments:
Post a Comment