"Algebraic topology can be roughly defined as the study of techniques for forming algebraic images of topological spaces. Most often these algebraic images are groups, but more elaborate structures such as rings, modules, and algebras also arise. The mechanisms that create these images - the ‘lanterns’ of algebraic topology, one might say - are known formally as functors and have the characteristic feature that they form images not only of spaces but also of maps. Thus, continuous maps between spaces are projected onto homomorphisms between their algebraic images, so topologically related spaces have algebraically related images." (Allen Hatcher, "Algebraic Topology", 2001)
"[…] topology, the study of continuous shape, a kind of generalized geometry where rigidity is replaced by elasticity. It's as if everything is made of rubber. Shapes can be continuously deformed, bent, or twisted, but not cut - that's never allowed. A square is topologically equivalent to a circle, because you can round off the corners. On the other hand, a circle is different from a figure eight, because there's no way to get rid of the crossing point without resorting to scissors. In that sense, topology is ideal for sorting shapes into broad classes, based on their pure connectivity." (Steven Strogatz, "Sync: The Emerging Science of Spontaneous Order", 2003)
"If you assume continuity, you can open the well-stocked mathematical toolkit of continuous functions and differential equations, the saws and hammers of engineering and physics for the past two centuries (and the foreseeable future)." (Benoît Mandelbrot, "The (Mis)Behaviour of Markets: A Fractal View of Risk, Ruin and Reward", 2004)
"Mathematics is sometimes described as the science which generates eternal notions and concepts for the scientific method: derivatives‚ continuity‚ powers‚ logarithms are examples. The notions of chaos‚ fractals and strange attractors are not yet mathematical notions in that sense‚ because their final definitions are not yet agreed upon." (Heinz-Otto Peitgen et al, "Chaos and Fractals: New Frontiers of Science", 2004)
"A group G is a topological group if it has a topology defined on it so that multiplication and inverse are continuous. In more detail, a topological group is an object G having two quite different structures: a collection of open subsets satisfying the axioms for a topology, and a multiplication map with identity and inverse satisfying the groupaxioms." (Miles Reid & Balazs Szendröi, "Geometry and Topology", 2005)
"The calculus is a theory of continuous change - processes that move smoothly and that do not stop, jerk, interrupt themselves, or hurtle over gaps in space and time. The supreme example of a continuous process in nature is represented by the motion of the planets in the night sky as without pause they sweep around the sun in elliptical orbits; but human consciousness is also continuous, the division of experience into separate aspects always coordinated by some underlying form of unity, one that we can barely identify and that we can describe only by calling it continuous." (David Berlinski, "Infinite Ascent: A short history of mathematics", 2005)
"A continuous function preserves closeness of points. A discontinuous function maps arbitrarily close points to points that are not close. The precise definition of continuity involves the relation of distance between pairs of points. […] continuity, a property of functions that allows stretching, shrinking, and folding, but preserves the closeness relation among points." (Robert Messer & Philip Straffin, "Topology Now!", 2006)
"Topology is the study of geometric objects as they are transformed by continuous deformations. To a topologist the general shape of the objects is of more importance than distance, size, or angle." (Robert Messer & Philip Straffin, "Topology Now!", 2006)
"The Simplicial Approximation Theorem is a concise statement of the general result for functions between any two triangulated spaces. It says that on a suitable subdivision of the domain, any continuous function can be homotopically deformed by an arbitrarily small amount so that the modified function sends vertices to vertices and is linear on each edge, face, tetrahedron, and higher-dimensional cell of the triangulation." (Robert Messer & Philip Straffin, "Topology Now!", 2006)
"Use of a histogram should be strictly reserved for continuous numerical data or for data that can be effectively modelled as continuous […]. Unlike bar charts, therefore, the bars of a histogram corresponding to adjacent intervals should not have gaps between them, for obvious reasons." (Alan Graham, "Developing Thinking in Statistics", 2006)
"Partial differential equations arise in biological systems because the quantity being modeled not only changes continuously with respect to time but changes continuously with respect to another variable such as age or spatial location." (Linda J S Allen, "An Introduction to Mathematical Biology", 2007)
"The importance of continued fractions in approximation of irrationals by rationals is that the so called convergents of the fraction, which are the rational approximations of the original number that result from truncating the representation at some point and working out the corresponding rational number, are the best approximation possible in the sense that any better approximation will have a larger denominator than that of the convergents." (Peter M Higgins, "Number Story: From Counting to Cryptography", 2008)
No comments:
Post a Comment