"In topology we are concerned with geometrical facts that do not even involve the concepts of a straight line or plane but only the continuous connectiveness between points of a figure." (David Hilbert, "Geometry and Imagination", 1952)
"Speaking roughly, a homology theory assigns groups to topological spaces and homomorphisms to continuous maps of one space into another. To each array of spaces and maps is assigned an array of groups and homomorphisms. In this way, a homology theory is an algebraic image of topology. The domain of a homology theory is the topologist’s field of study. Its range is the field of study of the algebraist. Topological problems are converted into algebraic problems." (Samuel Eilenberg & Norman E Steenrod, "Foundations of Algebraic Topology", 1952)
"The bridging of the chasm between the domains of the discrete and the continuous, or between arithmetic and geometry, is one of the most important - nay, the most important - problem of the foundations of mathematics. [...] Of course, the character of reasoning has changed, but, as always, the difficulties are due to the chasm between the discrete and the continuous - that permanent stumbling block which also plays an extremely important role in mathematics, philosophy, and even physics." (Abraham Fraenkel, "Foundations of Set Theory", 1953)
"A common and very powerful constraint is that of continuity. It is a constraint because whereas the function that changes arbitrarily can undergo any change, the continuous function can change, at each step, only to a neighbouring value."
"As a simple trick, the discrete can often be carried over into the continuous, in a way suitable for practical purposes, by making a graph of the discrete, with the values shown as separate points. It is then easy to see the form that the changes will take if the points were to become infinitely numerous and close together."
"Whereas the continuous symmetries always lead to conservation laws in classical mechanics, a discrete symmetry does not. With the introduction of quantum mechanics, however, this difference between the discrete and continuous symmetries disappears. The law of right-left symmetry then leads also to a conservation law: the conservation of parity." (Chen-Ning Yang, "The Law of Parity Conservation and Other Symmetry Laws of Physics", [Nobel lecture] 1957)
"The mathematical theory of continuity is based, not on intuition, but on the logically developed theories of number and sets of points." (Carl B Boyer, "The History of the Calculus and Its Conceptual Development", 1959)
"Analysis is primarily concerned with limit processes and continuity, so it is not surprising that mathematicians thinking along these lines soon found themselves studying (and generalizing) two elementary concepts: that of a convergent sequence of real or complex numbers, and that of a continuous function of a real or complex variable."
"A fuzzy set is a class of objects with a continuum of grades of membership. Such a set is characterized by a membership (characteristic) function which assigns to each object a grade of membership ranging between zero and one. The notions of inclusion, union, intersection, complement, relation, convexity, etc., are extended to such sets, and various properties of these notions in the context of fuzzy sets are established. In particular, a separation theorem for convex fuzzy sets is proved without requiring that the fuzzy sets be disjoint." (Lotfi A Zadeh, "Fuzzy Sets", 1965)
"General or point set topology can be thought of as the abstract study of the ideas of nearness and continuity. This is done in the first place by picking out in elementary geometry those properties of nearness that seem to be fundamental and taking them as axioms." (Andrew H Wallace, "Differential Topology: First Steps", 1968)
No comments:
Post a Comment