27 December 2025

On Topology: On Knotting

"In geometry, topology is the study of properties of shapes that are independent of size or shape and are not changed by stretching, bending, knotting, or twisting." (M C Escher, 1971

"Linking topology and dynamical systems is the possibility of using a shape to help visualize the whole range of behaviors of a system. For a simple system, the shape might be some kind of curved surface; for a complicated system, a manifold of many dimensions. A single point on such a surface represents the state of a system at an instant frozen in time. As a system progresses through time, the point moves, tracing an orbit across this surface. Bending the shape a little corresponds to changing the system's parameters, making a fluid more visous or driving a pendulum a little harder. Shapes that look roughly the same give roughly the same kinds of behavior. If you can visualize the shape, you can understand the system." (James Gleick, "Chaos: Making a New Science", 1987)

"Topology deals with those properties of curves, surfaces, and more general aggregates of points that are not changed by continuous stretching, squeezing, or bending. To a topologist, a circle and a square are the same, because either one can easily be bent into the shape of the other. In three dimensions, a circle and a closed curve with an overhand knot in it are topologically different, because no amount of bending, squeezing, or stretching will remove the knot." (Edward N Lorenz, "The Essence of Chaos", 1993)

"Quantum physics, in particular particle and string theory, has proven to be a remarkable fruitful source of inspiration for new topological invariants of knots and manifolds. With hindsight this should perhaps not come as a complete surprise. Roughly one can say that quantum theory takes a geometric object (a manifold, a knot, a map) and associates to it a (complex) number, that represents the probability amplitude for a certain physical process represented by the object." (Robbert Dijkgraaf, "Mathematical Structures", 2005)

"Like moonlight itself, Monstrous Moonshine is an indirect phenomenon. Just as in the theory of moonlight one must introduce the sun, so in the theory of Moonshine one must go well beyond the Monster. Much as a book discussing moonlight may include paragraphs on sunsets or comet tails, so do we discuss fusion rings, Galois actions and knot invariants." (Terry Gannon, "Moonshine Beyond the Monster: The Bridge Connecting Algebra, Modular Forms and Physics", 2006)

"Euler’s formula is an ideal tour guide because it has access to marvelous rooms that are rarely seen by other visitors. By following Euler’s formula we see some of the most intriguing areas of mathematics - geometry, combinatorics, graph theory, knot theory, differential geometry, dynamical systems, and topology. These are beautiful subjects that a typical student, even an undergraduate mathematics major, may never encounter." (David S Richeson, "Euler’s Gem: The Polyhedron Formula and the Birth of Topology", 2008)

"Topology is a child of twentieth century mathematical thinking. It allows us to consider the shape and structure of an object without being wedded to its size or to the distances between its component parts. Knot theory, homotopy theory, homology theory, and shape theory are all part of basic topology. It is often quipped that a topologist does not know the difference between his coffee cup and his donut - because each has the same abstract 'shape' without looking at all alike." (Steven G Krantz, "Essentials of Topology with Applications”, 2009)

"Knot theory for a long time was a little backwater of topology." (Joan Birman) 

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Topology: On Knotting

"In geometry, topology is the study of properties of shapes that are independent of size or shape and are not changed by stretching, be...