28 December 2025

On Invariance (1980-1989)

"An essential condition for a theory of choice that claims normative status is the principle of invariance: different representations of the same choice problem should yield the same preference. That is, the preference between options should be independent of their description. Two characterizations that the decision maker, on reflection, would view as alternative descriptions of the same problem should lead to the same choice-even without the benefit of such reflection." (Amos Tversky & Daniel Kahneman, "Rational Choice and the Framing of Decisions", The Journal of Business Vol. 59 (4), 1986)

"Unlike an architect, Nature does not go around expounding on the wondrous symmetries of Her design. Instead, theoretical physicists must deduce them. Some symmetries, such as parity and rotational invariances, are intuitively obvious. We expect Nature to possess these symmetries, and we are shocked if She does not. Other symmetries, such as Lorentz invariance and general covariance, are more subtle and not grounded in our everyday perceptions. But, in any case, in order to find out if Nature employs a certain symmetry, we must compare the implications of the symmetry with observation." (Anthony Zee, "Fearful Symmetry: The Search for Beauty in Modern Physics", 1986)

"The impossibility of defining absolute motion can be seen as the manifestation of a symmetry known as relativistic invariance. In the same way that parity invariance tells us that we cannot distinguish the mirror-image world from our world, relativistic invariance tells us that it is impossible to decide whether we are at rest or moving steadily." (Anthony Zee, "Fearful Symmetry: The Search for Beauty in Modern Physics", 1986)

"The power and glory of symmetry allow us to bypass completely the construction of strong interaction theories of dubious utility. We are able to contain and isolate our ignorance. [...] Symmetry tells us that states in the same multiplet must have the same energy, but it cannot tell us what that energy is." (Anthony Zee, "Fearful Symmetry: The Search for Beauty in Modern Physics", 1986)

"To detect a symmetry in the fundamental design, one would have to check the covariance of each of the many equations of motion in the differential formulation. With the action formulation, on the other hand, one has the considerably easier task of checking the invariance of the action." (Anthony Zee, "Fearful Symmetry: The Search for Beauty in Modern Physics", 1986)

"Unlike an architect, Nature does not go around expounding on the wondrous symmetries of Her design. Instead, theoretical physicists must deduce them. Some symmetries, such as parity and rotational invariances, are intuitively obvious. We expect Nature to possess these symmetries, and we are shocked if She does not. Other symmetries, such as Lorentz invariance and general covariance, are more subtle and not grounded in our everyday perceptions. But, in any case, in order to find out if Nature employs a certain symmetry, we must compare the implications of the symmetry with observation." (Anthony Zee, "Fearful Symmetry: The Search for Beauty in Modern Physics", 1986)

"Fractal geometry is concerned with the description, classification, analysis, and observation of subsets of metric spaces (X, d). The metric spaces are usually, but not always, of an inherently 'simple' geometrical character; the subsets are typically geometrically 'complicated'. There are a number of general properties of subsets of metric spaces, which occur over and over again, which are very basic, and which form part of the vocabulary for describing fractal sets and other subsets of metric spaces. Some of these properties, such as openness and closedness, which we are going to introduce, are of a topological character. That is to say, they are invariant under homeomorphism." (Michael Barnsley, "Fractals Everwhere", 1988)

"In deterministic fractal geometry the focus is on those subsets of a space which are generated by, or possess invariance properties under, simple geometrical transformations of the space into itself. A simple geometrical transformation is one which is easily conveyed or explained to someone else. Usually they can be completely specified by a small set of parameters." (Michael Barnsley, "Fractals Everwhere", 1988)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Invariance (1990-1999)

"Axiomatic theories of choice introduce preference as a primitive relation, which is interpreted through specific empirical procedures ...