21 December 2025

On Counting (-1899)

"The objection we are dealing with argues from the standpoint of an agent that presupposes time and acts in time, but did not institute time. Hence the question about 'why God's eternal will produces an effect now and and not earlier' presupposes that time exists; for 'now' and 'earlier' are segments of time. With regard to the universal production of things, among which time is also to be counted, we should not ask, 'Why now and not earlier?' Rather we should ask: 'Why did God wish this much time to intervene?' And this depends on the divine will, which is perfectly free to assign this or any other quantity to time. The same may be noted with respect to the dimensional quantity of the world. No one asks why God located the material world in such and such a place rather than higher up or lower down or in some other position; for there is no place outside the world. The fact that God portioned out so much quantity to the world that no part of it would be beyond the place occupied in some other locality, depends on the divine will. However, although there was no time prior to the world and no place outside the world, we speak as if there were. Thus we say that before the world existed there was nothing except God, and that there is no body lying outside the world. But in thus speaking of 'before' and 'outside,' we have in mind nothing but time and place as they exist in our imagination." (Thomas Aquinas, "Compendium Theologiae" ["Compendium of Theology"], cca. 1265 [unfinished])

"The existence of an actual infinite multitude is impossible. For any set of things one considers must be a specific set. And sets of things are specified by the number of things in them. Now no number is infinite, for number results from counting through a set of units. So no set of things can actually be inherently unlimited, nor can it happen to be unlimited." (St. Thomas Aquinas, "Summa Theologica", cca. 1266-1273)

"I could be bounded in a nutshell, and count myself a king of infinite space." (William Shakespeare,"Hamlet", cca. 1600)

"A problem was posed to me about an island in the city of Königsberg, surrounded by a river spanned by seven bridges, and I was asked whether someone could traverse the separate bridges in a connected walk in such a way that each bridge is crossed only once. I was informed that hitherto no-one had demonstrated the possibility of doing this, or shown that it is impossible. This question is so banal, but seemed to me worthy of attention in that not geometry, nor algebra, nor even the art of counting was sufficient to solve it. In view of this, it occurred to me to wonder whether it belonged to the geometry of position, which Leibniz had once so much longed for. And so, after some deliberation, I obtained a simple, yet completely established, rule with whose help one can immediately decide for all examples of this kind, with any number of bridges in any arrangement, whether or not such a round trip is possible […]" (Leonard Euler, [letter to Giovanni Marinoni] 1736)

"Our general arithmetic, so far surpassing in extent the geometry of the ancients, is entirely the creation of modern times. Starting originally from the notion of absolute integers, it has gradually enlarged its domain. To integers have been added fractions, to rational quantities the irrational, to positive the negative .and to the real the imaginary. This advance, however, has always been made at first with timorous and hesitating step. The early algebraists called the negative roots of equations false roots, and these are indeed so when the problem to which they relate has been stated in such a form that the character of the quantity sought allows of no opposite. But just as in general arithmetic no one would hesitate to admit fractions, although there are so many countable things where a fraction has no meaning, so we ought not to deny to, negative numbers the rights accorded to positive simply because innumerable things allow no opposite. The reality of negative numbers is sufficiently justified since in innumerable other cases they find an adequate substratum. This has long been admitted, but the imaginary quantities - formerly and occasionally now, though improperly, called impossible-as opposed to real quantities are still rather tolerated than fully naturalized, and appear more like an empty play upon symbols to which a thinkable substratum is denied unhesitatingly by those who would not depreciate the rich contribution which this play upon symbols has made to the treasure of the relations of real quantities." (Carl F Gauss, "Theoria residuorum biquadraticorum, Commentatio secunda", Göttingische gelehrte Anzeigen, 1831)

"God puts his finger in the other scale, And up we bounce, a bubble. Nought is great Nor small, with God; for none but he can make The atom imperceptible, and none But he can make a world; he counts the orbs, He counts the atoms of the universe, And makes both equal; both are infinite. " (Philip James Bailey, "Festus", 1845)

"Therefore both multitudes have one and the same plurality, as one can also say, equal plurality. Obviously this conclusion becomes void as soon as the multitude of things in A is an infinite multitude, for now not only do we never reach, by counting, the last thing in A, but rather, by virtue of the definition of an infinite multitude, in itself there is no last thing in A, i.e. however many have already been designated, there are always others to designate." (Bernard Bolzano, "Paradoxien des Unedlichen" ["Paradoxes of the Infinite"], 1851)

"The dominant principle which characterizes my graphic tables and my figurative maps is to make immediately appreciable to the eye, as much as possible, the proportions of numeric results. […] Not only do my maps speak, but even more, they count, they calculate by the eye." (Chatles D Minard, "Des tableaux graphiques et des cartes figuratives", 1862)

"I regard the whole of arithmetic as a necessary, or at least natural, consequence of the simplest arithmetical act, that of counting, and counting itself as nothing else than the successive creation of the infinite series of positive integers in which each individual is defined by the one immediately preceding […]" (Richard Dedekind,"On Continuity and Irrational Numbers", 1872)

"Definite portions of a manifoldness, distinguished by a mark or by a boundary, are called Quanta. Their comparison with regard to quantity is accomplished in the case of discrete magnitudes by counting, in the case of continuous magnitudes by measuring. Measure consists in the superposition of the magnitudes to be compared; it therefore requires a means of using one magnitude as the standard for another. In the absence of this, two magnitudes can only be compared when one is a part of the other; in which case also we can only determine the more or less and not the how much. The researches which can in this case be instituted about them form a general division of the science of magnitude in which magnitudes are regarded not as existing independently of position and not as expressible in terms of a unit, but as regions in a manifoldness." (Bernhard Riemann, "On the Hypotheses which lie at the Bases of Geometry", 1873)

"Every word instantly becomes a concept precisely insofar as it is not supposed to serve as a reminder of the unique and entirely individual original experience to which it owes its origin; but rather, a word becomes a concept insofar as it simultaneously has to fit countless more or less similar cases - which means, purely and simply, cases which are never equal and thus altogether unequal. Every concept arises from the equation of unequal things. Just as it is certain that one leaf is never totally the same as another, so it is certain that the concept 'leaf' is formed by arbitrarily discarding these individual differences and by forgetting the distinguishing aspects." (Friedrich Nietzsche, "On Truth and Lie in an Extra-Moral Sense", 1873)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Counting (2020-)

"Statisticians are sometimes dismissed as bean counters. The sneering term is misleading as well as unfair. Most of the concepts that m...