22 December 2025

On Geometry (1650-1699)

"Indeed, many geometric things can be discovered or elucidated by algebraic principles, and yet it does not follow that algebra is geometrical, or even that it is based on geometric principles (as some would seem to think). This close affinity of arithmetic and geometry comes about, rather, because geometry is, as it were, subordinate to arithmetic, and applies universal principles of arithmetic to its special objects." (John Wallis, "Mathesis Universalis", 1657)

"For, Mathematical Demonstrations being built upon the impregnable Foundations of Geometry and Arithmetick, are the only Truths, that can sink into the Mind of Man, void of all Uncertainty; and all other Discourses participate more or less of Truth, according as their Subjects are more or less capable of Mathematical Demonstration." (Christopher Wren, [lecture at Gresham College] 1657)

"Only geometry can hand us the thread [which will lead us through] the labyrinth of the continuum's composition, the maximum and the minimum, the infinitesimal and the infinite; and no one will arrive at a truly solid metaphysics except he who has passed through this [labyrinth]." (Gottfried W Leibniz, "Dissertatio Exoterica De Statu Praesenti et Incrementis Novissimis Deque Usu Geometriae", 1676)

"After all the progress I have made in these matters, I am still not happy with Algebra, because it provides neither the shortest ways nor the most beautiful constructions of Geometry. This is why when it comes to that, I think that we need another analysis which is properly geometric or linear, which expresses to us directly situm, in the same way as algebra expresses magnitudinem. And I think that I have the tools for that, and that we might represent figures and even engines and motion in character, in the same way as algebra represents numbers in magnitude." (Gottfried W Leibniz, [letter to Christiaan Huygens] 1679)

"The description of right lines and circles, upon which geometry is founded, belongs to mechanics. Geometry does not teach us to draw these lines, but requires them to be drawn." (Isaac Newton, 1687)

"The Excellence of Modern Geometry is in nothing more evident, than in those full and adequate Solutions it gives to Problems; representing all possible Cases in one view, and in one general Theorem many times comprehending whole Sciences; which deduced at length into Propositions, and demonstrated after the manner of the Ancients, might well become the subjects of large Treatises: For whatsoever Theorem solves the most complicated Problem of the kind, does with a due Reduction reach all the subordinate Cases." (Edmund Halley, "An Instance of the Excellence of Modern Algebra in the resolution of the problem of finding the foci of optic glasses universally", Philosophical Transactions, 1694) 

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Accuracy (1800-1899)

"Statistical accounts are to be referred to as a dictionary by men of riper years, and by young men as a grammar, to teach them the rel...