"Apart from its own intrinsic interest, a knowledge of differentiable manifolds has become useful-ven mandatory-in an ever-increasing number of areas of mathematics and of its applications. This is not too surprising, since differentiable manifolds are the underlying, if unacknowledged, objects of study in much of advanced calculus and analysis. Indeed, such topics as line and surface integrals, divergence and curl of vector fields, and Stokes's and Green's theorems find their most natural setting in manifold theory. But however natural the leap from calculus on domains of Euclidean space to calculus on manifolds may be to those who have made it, it is not at all easy for most students." (William M Boothby, "Riemannian geometry: An introduction to differentiable Manifolds and Riemannian Geometry", 1975)
"The chief difficulty of modern theoretical physics resides not in the fact that it expresses itself almost exclusively in mathematical symbols, but in the psychological difficulty of supposing that complete nonsense can be seriously promulgated and transmitted by persons who have sufficient intelligence of some kind to perform operations in differential and integral calculus […]" (Celia Green, "The Decline and Fall of Science", 1976)
"In the path-integral formulation, the essence of quantum physics may be summarized with two fundamental rules: (1). The classical action determines the probability amplitude for a specific chain of events to occur, and (2) the probability that either one or the other chain of events occurs is determined by the probability amplitudes corresponding to the two chains of events. Finding these rules represents a stunning achievement by the founders of quantum physics." (Anthony Zee, "Fearful Symmetry: The Search for Beauty in Modern Physics", 1986)
"The acceptance of complex numbers into the realm of algebra had an impact on analysis as well. The great success of the differential and integral calculus raised the possibility of extending it to functions of complex variables. Formally, we can extend Euler's definition of a function to complex variables without changing a single word; we merely allow the constants and variables to assume complex values. But from a geometric point of view, such a function cannot be plotted as a graph in a two-dimensional coordinate system because each of the variables now requires for its representation a two-dimensional coordinate system, that is, a plane. To interpret such a function geometrically, we must think of it as a mapping, or transformation, from one plane to another." (Eli Maor, "e: The Story of a Number", 1994)
"By studying analytic functions using power series, the algebra of the Middle Ages was connected to infinite operations" (various algebraic operations with infinite series). The relation of algebra with infinite operations was later merged with the newly developed differential and integral calculus. These developments gave impetus to early stages of the development of analysis. In a way, we can say that analyticity is the notion that first crossed the boundary from finite to infinite by passing from polynomials to infinite series. However, algebraic properties of polynomial functions still are strongly present in analytic functions." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)
"One of the basic tasks of topology is to learn to distinguish nonhomeomorphic figures. To this end one introduces the class of invariant quantities that do not change under homeomorphic transformations of a given figure. The study of the invariance of topological spaces is connected with the solution of a whole series of complex questions: Can one describe a class of invariants of a given manifold? Is there a set of integral invariants that fully characterizes the topological type of a manifold? and so forth." (Michael I Monastyrsky, "Riemann, Topology, and Physics", 1999)
No comments:
Post a Comment