"In astronomy the scenery is continually shifting, and the modes of language vary in proportion as this inexhaustible science makes progress in improvement, and supplies us with new theories. Ptolemy spake the language ot the people: to Copernicus we are indebted for the language of astronomy; which Tycho Brahe in some measure confounded: Kepler and Newton rectified his faults, and gave to astronomical language a superior degree of elegance and perfection. The discoveries of the present and future times will introduce in this respect farther changes. All these different modes of language will, nevertheless, continue to be always intelligible; and may always be preserved in a certain degree, and within certain limitations." (Johann H Lambert, "The System of the World", 1800)
"It is a vulgar belief that our astronomical knowledge dates only from the recent century when it was rescued from the monks who imprisoned Galileo; but Hipparchus [...] who among other achievements discovered the precession of the eqinoxes, ranks with the Newtons and the Keplers; and Copernicus, the modern father of our celestial science, avows himself, in his famous work, as only the champion of Pythagoras, whose system he enforces and illustrates. Even the most modish schemes of the day on the origin of things, which captivate as much by their novelty as their truth, may find their precursors in ancient sages, and after a careful analysis of the blended elements of imagination and induction which charaterise the new theories, they will be found mainly to rest on the atom of Epicurus and the monad of Thales. Scientific, like spiritual truth, has ever from the beginning been descending from heaven to man." (Benjamin Disraeli, "Lothair", 1879)
"It has been said that no science is established on a firm basis unless its generalisations can be expressed in terms of number, and it is the special province of mathematics to assist the investigator in finding numerical relations between phenomena. After experiment, then mathematics. While a science is in the experimental or observational stage, there is little scope for discerning numerical relations. It is only after the different workers have 'collected data' that the mathematician is able to deduce the required generalisation. Thus a Maxwell followed Faraday and a Newton completed Kepler." (Joseph W Mellor, "Higher Mathematics for Students of Chemistry and Physics", 1902)
"It seems that the human mind has first to construct forms independently, before we can find them in things. Kepler’s marvelous achievement is a particularly fine example of the truth that knowledge cannot spring from experience alone, but only from the comparison of the inventions of the intellect with observed fact." (Albert Einstein, 1930)
"The state of a system at a given moment depends on two things - its initial state, and the law according to which that state varies. If we know both this law and this initial state, we have a simple mathematical problem to solve, and we fall back upon our first degree of ignorance. Then it often happens that we know the law and do not know the initial state. It may be asked, for instance, what is the present distribution of the minor planets? We know that from all time they have obeyed the laws of Kepler, but we do not know what was their initial distribution. In the kinetic theory of gases we assume that the gaseous molecules follow rectilinear paths and obey the laws of impact and elastic bodies; yet as we know nothing of their initial velocities, we know nothing of their present velocities. The calculus of probabilities alone enables us to predict the mean phenomena which will result from a combination of these velocities. This is the second degree of ignorance. Finally it is possible, that not only the initial conditions but the laws themselves are unknown. We then reach the third degree of ignorance, and in general we can no longer affirm anything at all as to the probability of a phenomenon. It often happens that instead of trying to discover an event by means of a more or less imperfect knowledge of the law, the events may be known, and we want to find the law; or that, instead of deducing effects from causes, we wish to deduce the causes." (Henri Poincaré, "Science and Hypothesis", 1902)
No comments:
Post a Comment