11 December 2025

On Laws (1900-1909)

"The laws of thermodynamics, as empirically determined, express the approximate and probable behavior of systems of a great number of particles, or, more precisely, they express the laws of mechanics for such systems as they appear to beings who have not the fineness of perception to enable them to appreciate quantities of the order of magnitude of those which relate to single particles, and who cannot repeat their experiments often enough to obtain any but the most probable results." (Josiah W Gibbs, "Elementary Principles in Statistical Mechanics", 1902)

"The most important fundamental laws and facts of physical science have all been discovered, and these are now so firmly established that the possibility of their ever being supplemented in consequence by new discoveries is exceedingly remote." (Albert Michelson, 1903)

"[…] there is a God precisely because Nature itself, even in chaos, cannot proceed except in an orderly and regular manner." (Immanuel Kant) "There is no such thing as chaos, it tacitly asserts, in the sidereal world or outside of it. For chaos is the negation of law, and law is the expression of the will of God." (Agnes M Clerke, "Problems in Astrophysics",  1903)

"A vital phenomenon can only be regarded as explained if it has been proven that it appears as the result of the material components of living organisms interacting according to the laws which those same components follow in their interactions outside of living systems." (Adolf E Fick, "Gesammelte Schriften" Vol. 3, 1904)

"The mathematical formula is the point through which all the light gained by science passes in order to be of use to practice; it is also the point in which all knowledge gained by practice, experiment, and observation must be concentrated before it can be scientifically grasped. The more distant and marked the point, the more concentrated will be the light coming from it, the more unmistakable the insight conveyed. All scientific thought, from the simple gravitation formula of Newton, through the more complicated formulae of physics and chemistry, the vaguer so called laws of organic and animated nature, down to the uncertain statements of psychology and the data of our social and historical knowledge, alike partakes of this characteristic, that it is an attempt to gather up the scattered rays of light, the different parts of knowledge, in a focus, from whence it can be again spread out and analyzed, according to the abstract processes of the thinking mind. But only when this can be done with a mathematical precision and accuracy is the image sharp and well-defined, and the deductions clear and unmistakable. As we descend from the mechanical, through the physical, chemical, and biological, to the mental, moral, and social sciences, the process of focalization becomes less and less perfect, - the sharp point, the focus, is replaced by a larger or smaller circle, the contours of the image become less and less distinct, and with the possible light which we gain there is mingled much darkness, the sources of many mistakes and errors. But the tendency of all scientific thought is toward clearer and clearer definition; it lies in the direction of a more and more extended use of mathematical measurements, of mathematical formulae." (John T Merz, "History of European Thought in the 19th Century" Vol. 1, 1904)

"The most ordinary things are to philosophy a source of insoluble puzzles. In order to explain our perceptions it constructs the concept of matter and then finds matter quite useless either for itself having or for causing perceptions in a mind. With infinite ingenuity it constructs a concept of space or time and then finds it absolutely impossible that there be objects in this space or that processes occur during this time [...] The source of this kind of logic lies in excessive confidence in the so-called laws of thought." (Ludwig E Boltzmann, "On Statistical Mechanics", 1904)

"A mathematical theorem and its demonstration are prose. But if the mathematician is overwhelmed with the grandeur and wondrous harmony of geometrical forms, of the importance and universal application of mathematical maxims, or, of the mysterious simplicity of its manifold laws which are so self-evident and plain and at the same time so complicated and profound, he is touched by the poetry of his science; and if he but understands how to give expression to his feelings, the mathematician turns poet, drawing inspiration from the most abstract domain of scientific thought." (Paul Carus, „Friedrich Schiller: A Sketch of His Life and an Appreciation of His Poetry", 1905)

"The laws of nature are drawn from experience, but to express them one needs a special language: for, ordinary language is too poor and too vague to express relations so subtle, so rich, so precise. Here then is the first reason why a physicist cannot dispense with mathematics: it provides him with the one language he can speak […]. Who has taught us the true analogies, the profound analogies which the eyes do not see, but which reason can divine? It is the mathematical mind, which scorns content and clings to pure form." (Henri Poincare, "The Value of Science​", 1905)

"A physical theory is not an explanation. It is a system of mathematical propositions, deduced from a small number of principles, which aim to represent as simply, as completely, and as exactly as possible a set of experimental laws. […] Thus a true theory is not a theory which gives an explanation of physical appearances in conformity with reality; it is a theory which represents in a satisfactory manner a group of experimental laws. A false theory is not an attempt at an explanation based on assumptions contrary to reality; it is a ·group of propositions which do not agree with the experimental laws. Agreement with experiment is the sole criterion of truth for a physical theory." (Pierre-Maurice-Marie Duhem, "La théorie physique. Son objet, sa structure", 1906)

"If the aim of physical theories is to explain experimental laws, theoretical physics is not an autonomous science; it is subordinate to metaphysics." (Pierre Duhem, "The Aim and Structure of Physical Theory", 1906)

"Order, wherever it reigns, brings beauty with it. Theory not only renders the group of physical laws it represents easier to handle, more convenient, and more useful, but also more beautiful." (Pierre-Maurice-Marie Duhem, "La théorie physique. Son objet, sa structure", 1906)

"Pythagoras says that number is the origin of all things, and certainly the law of number is the key that unlocks the secrets of the universe. But the law of number possesses an immanent order, which is at first sight mystifying, but on a more intimate acquaintance we easily understand it to be intrinsically necessary; and this law of number explains the wondrous consistency of the laws of nature." (Paul Carus, "Reflections on Magic Squares", Monist Vol. 16, 1906)

"[...] the aim of physical theory is to become a natural classification, to establish among diverse experimental laws a logical coordination serving as a sort of image and reflection of the true order according to which the realities escaping us are organized." (Pierre-Maurice-Marie Duhem, "La théorie physique. Son objet, sa structure", 1906)

"The distinction between physics, which studies phenomena and their laws, and metaphysics, which seeks to know the essence of matter insofar as it is the cause of phenomena and the basis of laws, is deprived of any foundation. The mind does not start from the knowledge of phenomena to rise to the knowledge of matter; what it can know from the start is the very nature of matter, and thence the explanation of phenomena." (Pierre-Maurice-Marie Duhem, "La théorie physique. Son objet, sa structure", 1906)

"Theory is not solely an economical representation of experimental laws; it is also a classification of these laws. […] theory, by developing the numerous ramifications of the deductive reasoning which connects principles to experimental laws, establishes an order and a classification among these laws. It brings some laws together, closely arranged in the same group; it separates some of the others by placing them in two groups very far apart. Theory gives, so to speak, the table of contents and the chapter headings under which the science to be studied will be methodically divided, and it indicates the laws which are to be arranged under each of these chapters." (Pierre-Maurice-Marie Duhem, "La théorie physique. Son objet, sa structure", 1906)

"Thus, physical theory never gives us the explanation of experimental laws; it never reveals realities hiding under the sensible appearances; but the more complete it becomes, the more we apprehend that the logical order in which theory orders experimental laws is the reflection of an ontological order, the more we suspect that the relations it establishes among the data of observation correspond to real relations among things, and the more we feel that theory tends to be a natural classification." (Pierre-Maurice-Marie Duhem, "La théorie physique. Son objet, sa structure", 1906)

"If we turn to the problems to which the calculus owes its origin, we find that not merely, not even primarily, geometry, but every other branch of mathematical physics - astronomy, mechanics, hydrodynamics, elasticity, gravitation, and later electricity and magnetism - in its fundamental concepts and basal laws contributed to its development and that the new science became the direct product of these influences. [...] The calculus is the greatest aid we have to the appreciation of physical truth in the broadest sense of the word." (William Osgood,"The Calculus in Colleges in Colleges and Technical Schools", Bulletin of the American Mathematical Society, 1907)

"[...] as for physics, it has developed remarkably as a precision science, in such a way that we can justifiably claim that the majority of all the greatest discoveries in physics are very largely based on the high degree of accuracy which can now be obtained in measurements made during the study of physical phenomena. [... Accuracy of measurement] is the very root, the essential condition, of our penetration deeper into the laws of physics - our only way to new discoveries." (K Bernhard Hasselberg, [Nobel Lecture] 1907)

"[…] as the sciences have developed further, the notion has gained ground that most, perhaps all, of our laws are only approximations." (William James, "Pragmatism: A New Name for Some Old Ways of Thinking", 1907)

"By laying down the relativity postulate from the outset, sufficient means have been created for deducing henceforth the complete series of Laws of Mechanics from the principle of conservation of energy" (and statements concerning the form of the energy) alone." (Hermann Minkowski, "The Fundamental Equations for Electromagnetic Processes in Moving Bodies", 1907)

"The motive for the study of mathematics is insight into the nature of the universe. Stars and strata, heat and electricity, the laws and processes of becoming and being, incorporate mathematical truths. If language imitates the voice of the Creator, revealing His heart, mathematics discloses His intellect, repeating the story of how things came into being. And the value of mathematics, appealing as it does to our energy and to our honor, to our desire to know the truth and thereby to live as of right in the household of God, is that it establishes us in larger and larger certainties. As literature develops emotion, understanding, and sympathy, so mathematics develops observation, imagination, and reason." (William E Chancellor, "A Theory of Motives, Ideals and Values in Education" 1907)

"A physical theory is not an explanation. It is a system of mathematical propositions, deduced from a small number of principles, which aim [...] to represent as simply, as completely, and as exactly as possible a group of experimental laws." (Pierre-Maurice-Marie Duhem,"The Aim and Structure of Physical Theory", 1908)

"An exceedingly small cause which escapes our notice determines a considerable effect that we cannot fail to see, and then we say the effect is due to chance. If we knew exactly the laws of nature and the situation of the universe at the initial moment, we could predict exactly the situation of that same universe at a succeeding moment. But even if it were the case that the natural laws had no longer any secret for us, we could still only know the initial situation 'approximately'. If that enabled us to predict the succeeding situation with 'the same approximation', that is all we require, and we should say that the phenomenon had been predicted, that it is governed by laws. But it is not always so; it may happen that small differences in the initial conditions produce very great ones in the final phenomena. A small error in the former will produce an enormous error in the latter. Prediction becomes impossible, and we have the fortuitous phenomenon." (Jules H Poincaré, Science and Method", 1908)

"If the aim of physical theories is to explain experimental laws, theoretical physics is not an autonomous science; it is subordinate to metaphysics." (Pierre-Maurice-Marie DuhemDuhem, "The Aim and Structure of Physical Theory", 1908)

"In fact, we only attain laws by violating nature, by isolating more or less artificially a phenomenon from the whole, by checking those influences which would have falsified the observation. Thus the law cannot directly express reality. The phenomenon as it is envisaged by it, the ‘pure’ phenomenon, is rarely observed without our intervention, and even with this it remains imperfect, disturbed by accessory phenomena. […] Doubtless, if nature were not ordered, if it did not present us with similar objects, capable of furnishing generalized concepts, we could not formulate laws." (Emile Meyerson, "Identity and Reality", 1908)

"It is impossible to follow the march of one of the greatest theories of physics, to see it unroll majestically its regular deductions starting from initial hypotheses, to see its consequences represent a multitude of experimental laws down to the smallest detail, without being charmed by the beauty of such a construction, without feeling keenly that such a creation of the human mind is truly a work of art." (Pierre-Maurice-Marie DuhemDuhem, "The Aim and Structure of Physical Theory", 1908)

"Let us look for a moment at the general significance of the fact that calculating machines actually exist, which relieve mathematicians of the purely mechanical part of numerical computations, and which accomplish the work more quickly and with a greater degree of accuracy; for the machine is not subject to the slips of the human calculator. The existence of such a machine proves that computation is not concerned with the significance of numbers, but that it is concerned essentially only with the formal laws of operation; for it is only these that the machine can obey - having been thus constructed - an intuitive perception of the significance of numbers being out of the question." (Felix Klein, "Elementarmathematik vom hoheren Standpunkte aus", 1908)

"Order wherever it reigns, brings beauty with it. Theory not only renders the group of physical laws it represents easier to handle, more convenient, and more useful, but also more beautiful." (Pierre-Maurice-Marie Duhem,"The Aim and Structure of Physical Theory", 1908)

"[...] physics makes progress because experiment constantly causes new disagreements to break out between laws and facts, and because physicists constantly touch up and modify laws in order that they may more faithfully represent the facts." (Pierre-Maurice-Marie Duhem, "The Aim and Structure of Physical Theory", 1908)

"The laws of physics are therefore provisional in that the symbols they relate too simple to represent reality completely." (Pierre-Maurice-Marie Duhem, "The Aim and Structure of Physical Theory", 1908)

"The sole purpose of physical theory is to provide a representation and classification of experimental laws; the only test permitting us to judge a physical theory and pronounce it good or bad is the comparison between the consequences of this theory and the experimental laws it has to represent and classify. " (Pierre-Maurice-Marie Duhem,"The Aim and Structure of Physical Theory", 1908)

"The whole world appears resolved into such world-lines. And I should like to say beforehand that, according to my opinion, it would be possible for the physical laws to find their fullest expression as correlations of these world-lines." (Hermann Minkowski, "Space and Time", [Address to the 80th Assembly of German Natural Scientists and Physicians] 1908)

"An experiment is an observation that can be repeated, isolated and varied. The more frequently you can repeat an observation, the more likely are you to see clearly what is there and to describe accurately what you have seen. The more strictly you can isolate an observation, the easier does your task of observation become, and the less danger is there of your being led astray by irrelevant circumstances, or of placing emphasis on the wrong point. The more widely you can vary an observation, the more clearly will be the uniformity of experience stand out, and the better is your chance of discovering laws." (Edward B Titchener, "A Text-Book of Psychology", 1909)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Literature: On Prediction (From Fiction to Science Fiction)

"[…] anybody with a genuine system of prediction would be using it, not selling it." (Philip K Dick, "Solar Lottery", 19...