12 December 2025

On Laws (1920-1929)

"Science is frankly empirical in method and aim; it seeks to discover the laws of concrete being and becoming, and to formulate these in the simplest terms, which are either immediate data of experience or verifiably derived therefrom." (J Arthur Thomson, "The System of Animate Nature" Vol. 1, 1920)

"Scientific principles and laws do not lie on the surface of nature. They are hidden, and must be wrested from nature by an active and elaborate technique of inquiry." (John Dewey, "Reconstruction in Philosophy", 1920)

"The discovery of Minkowski […] is to be found […] in the fact of his recognition that the four-dimensional space-time continuum of the theory of relativity, in its most essential formal properties, shows a pronounced relationship to the three-dimensional continuum of Euclidean geometrical space. In order to give due prominence to this relationship, however, we must replace the usual time co-ordinate t by an imaginary magnitude, √-1*ct, proportional to it. Under these conditions, the natural laws satisfying the demands of the" (special) theory of relativity assume mathematical forms, in which the time co-ordinate plays exactly the same role as the three space-coordinates. Formally, these four co-ordinates correspond exactly to the three space co-ordinates in Euclidean geometry." (Albert Einstein,"Relativity: The Special and General Theory", 1920)

"Tektology must clarify the modes of organization that are perceived to exist in nature and human activity; then it must generalize and systematize these modes; further it must explain them, that is, propose abstract schemes of their tendencies and laws; finally, based on these schemes, determine the direction of organizational methods and their role in the universal process. This general plan is similar to the plan of any natural science; but the objective of tektology is basically different. Tektology deals with organizational experiences not of this or that specialized field, but of all these fields together. In other words, tektology embraces the subject matter of all the other sciences and of all the human experience giving rise to these sciences, but only from the aspect of method, that is, it is interested only in the modes of organization of this subject matter." (Alexander Bogdanov, "Tektology: The Universal Organizational Science", 1922)

"The higher quality emerges from the lower level of existence and has its roots therein, but it emerges therefrom, and it does not belong to that lower level, but constitutes its possessor a new order of existent with its special laws of behaviour. The existence of emergent qualities thus described is something to be noted, as some would say, under the compulsion of brute empirical fact, or, as I should prefer to say in less harsh terms, to be accepted with the ‘natural piety’ of the investigator. It admits no explanation." (Samuel Alexander, "Space, Time and Deity", 1922)

"Architecture is the first manifestation of man creating his own universe, creating it in the image of nature, submitting to the laws of nature, the laws which govern our own nature, our universe." (Charles-Edouard Jeanneret [Le Corbusier], Towards a New Architecture, 1923)

"Revolution is everywhere, in everything. It is infinite. There is no final revolution, no final number. The social revolution is only one of an infinite number of numbers; the law of revolution is not a social law, but an immeasurably greater one. It is a cosmic, universal law - like the laws of the conservation of energy and of the dissipation of energy" (entropy)." (Yevgeny Zamiatin, "On Literature, Revolution, Entropy, and Other Matters", 1923)

"The question whether any branch of science can ever become purely deductive is easily answered. It cannot. If science deals with the external world, as we believe it does, and not merely with the relations of propositions then no branch of science can ever be purely deductive. Deductive reasoning by itself can never tell us about facts. The use of deduction in science is to serve as a calculus to make our observations go further, not to take the place of observation." (Arthur D Ritchie, "Scientific Method: An Inquiry into the Character and Validity of Natural Laws", 1923)

"It has long seemed obvious - and is, in fact, the characteristic tone of European science - that 'science' means breaking up complexes into their component elements. Isolate the elements, discover their laws, then reassemble them, and the problem is solved. All wholes are reduced to pieces and piecewise relations between pieces. The fundamental 'formula' of Gestalt theory might be expressed in this way. There are wholes, the behaviour of which is not determined by that of their individual elements, but where the part-processes are themselves determined by the intrinsic nature of the whole. It is the hope of Gestalt theory to determine the nature of such wholes." (Max Wertheimer, "Gestalt Theory," 1924)

"How many properties were there of which the compass knew nothing, how many cunning laws lay contained in embryo within an equation, the mysterious nut which must be artistically cracked to extract the rich kernel, the theorem!" (Jean-Henri Fabre,"The Life of the Fly", 1925)

"The discovery that all mathematics follows inevitably from a small collection of fundamental laws is one which immeasurably enhances the intellectual beauty of the whole; to those who have been oppressed by the fragmentary and incomplete nature of most existing chains of deduction this discovery comes with all the overwhelming force of a revelation; like a palace emerging from the autumn mist as the traveler ascends an Italian hill-side, the stately stories of the mathematical edifice appear in their due order and proportion, with a new perfection in every part." (Bertrand A W Russell, "Mysticism and Logic and Other Essays", 1925)

"As we continue the great adventure of scientific exploration our models must often be recast. New laws and postulates will be required, while those that we already have must be broadened, extended and generalized in ways that we are now hardly able to surmise." (Gilbert Newton Lewis, "The Anatomy of Science", 1926)

"Intermediate between mathematics, statistics, and economics, we find a new discipline which, for lack of a better name, may be called econometrics. Econometrics has as its aim to subject abstract laws of theoretical political economy or 'pure' economics to experimental and numerical verification, and thus to turn pure economics, as far as possible, into a science in the strict sense of the word." (Ragnar Frisch, "On a Problem in Pure Eco­nomics", 1926)

"The fundamental laws of chemistry which are well known to you and which are laws of discontinuity" (discontinuity between chemical species, and discontinuous variation according to the 'multiple proportions' in the composition of species made from the same simple bodies) then become immediately clear: they are imposed solely by the condition that the molecule constituting a compound contains a necessarily whole number of atoms of each of the simple bodies combined in this compound." (Jean-Baptiste Perrin, "Discontinuous Structure of Matter", [Nobel lecture] 1926)

"Scientific laws, when we have reason to think them accurate, are different in form from the common-sense rules which have exceptions: they are always, at least in physics, either differential equations or statistical averages." (Bertrand Russell, "The Analysis of Matter", 1927)

"The mystery that clings to numbers, the magic of numbers, may spring from this very fact, that the intellect, in the form of the number series, creates an infinite manifold of well distinguishable individuals. Even we enlightened scientists can still feel it e.g. in the impenetrable law of the distribution of prime numbers." (Hermann Weyl, "Philosophy of Mathematics and Natural Science", 1927)

"Since the fundamental character of the living thing is its organization, the customary investigation of the single parts and processes cannot provide a complete explanation of the vital phenomena. This investigation gives us no information about the coordination of parts and processes. Thus, the chief task of biology must be to discover the laws of biological systems" (at all levels of organization). We believe that the attempts to find a foundation for theoretical biology point at a fundamental change in the world picture. This view, considered as a method of investigation, we shall call ‘organismic biology’ and, as an attempt at an explanation, ‘the system theory of the organism’" (Ludwig von Bertalanffy,"Kritische Theorie der Formbildung", 1928)

"For establishing the laws of nature one resorts" (not deliberately but involuntarily) to the simplest formulas that seem to describe the phenomena with reasonable accuracy. […] Even those laws of nature that are the most general and important for the world view have always been proved experimentally only in a confined ambit and with limited accuracy. […] The exact formulation of the laws of nature by simple formulas is based on the desire to master external phenomena with the simplest tools possible." (Felix Klein, "Elementary Mathematics from a Higher Standpoint" Vol III: "Precision Mathematics and Approximation Mathematics", 1928)

"The rule is derived inductively from experience, therefore does not have any inner necessity, is always valid only for special cases and can anytime be refuted by opposite facts. On the contrary, the law is a logical relation between conceptual constructions; it is therefore deductible from upper laws and enables the derivation of lower laws; it has as such a logical necessity in concordance with its upper premises; it is not a mere statement of probability, but has a compelling, apodictic logical value once its premises are accepted.(Ludwig von Bertalanffy, "Kritische Theorie der Formbildung", 1928)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Laws (1940-1949)

"In perception, a knowledge forms itself slowly; in the [mental] image the knowledge is immediate. We see now that the image is a synth...