"Every theorem in geometry is a law of external nature, and might have been ascertained by generalizing from observation and experiment, which in this case resolve themselves into comparisons and measurements. But it was found practicable, and being practicable was desirable, to deduce these truths by ratiocination from a small number of general laws of nature, the certainty and universality of which was obvious to the most careless observer, and which compose the first principles and ultimate premises of the science." (John S Mill, "System of Logic", 1843)
"The immense part which those laws [laws of number and extension] take in giving a deductive character to the other departments of physical science, is well known; and is not surprising, when we consider that all causes operate according to mathematical laws. The effect is always dependent upon, or in mathematical language, is a function of, the quantity of the agent; and generally of its position also. We cannot, therefore, reason respecting causation, without introducing considerations of quantity and extension at every step; and if the nature of the phenomena admits of our obtaining numerical data of sufficient accuracy, the laws of quantity become the grand instruments for calculating forward to an effect, or backward to a cause." (John S Mill, "A System of Logic, Ratiocinative and Inductive", 1843)
"The value of mathematical instruction as a preparation for those more difficult investigations, consists in the applicability not of its doctrines but of its methods. Mathematics will ever remain the past perfect type of the deductive method in general; and the applications of mathematics to the simpler branches of physics furnish the only school in which philosophers can effectually learn the most difficult and important of their art, the employment of the laws of simpler phenomena for explaining and predicting those of the more complex." (John S Mill, "System of Logic", 1843)
"Geometry can in no way be viewed […] as a branch of mathematics; instead, geometry relates to something already given in nature, namely, space. I… realized that there must be a branch of mathematics which yields in a purely abstract way laws similar to geometry." (Hermann G Grassmann, "Ausdehnungslehre", 1844)
"With certain limited exceptions, the laws of physical science are positive and absolute, both in their aggregate, and in their elements, - in their sum, and in their details; but the ascertainable laws of the science of life are approximative only, and not absolute." (Elisha Bartlett, "An Essay on the Philosophy of Medical Science", 1844)
"A successful attempt to express logical propositions by symbols, the laws of whose combinations should be founded upon the laws of the mental processes which they represent, would, so far, be a step towards a philosophical language." (George Boole, "The Mathematical Analysis of Logic", 1847)
"He is not a true man of science who does not bring some sympathy to his studies, and expect to learn something by behavior as well as by application. It is childish to rest in the discovery of mere coincidences, or of partial and extraneous laws. The study of geometry is a petty and idle exercise of the mind if it is applied to no larger system than the starry one." (Henry D Thoreau, "A Week on the Concord and Merrimack Rivers", 1849)
"Those who can, in common algebra, find a square root of -1, will be at no loss to find a fourth dimension in space in which ABC may become ABCD: or, if they cannot find it, they have but to imagine it, and call it an impossible dimension, subject to all the laws of the three we find possible. And just as √-1 in common algebra, gives all its significant combinations true, so would it be with any number of dimensions of space which the speculator might choose to call into impossible existence." (Augustus De Morgan, "Trigonometry and Double Algebra", 1849)
No comments:
Post a Comment