"√-1 is take for granted today. No serious mathematician would deny that it is a number. Yet it took centuries for √-1 to be officially admitted to the pantheon of numbers. For almost three centuries, it was controversial; mathematicians didn't know what to make of it; many of them worked with it successfully without admitting its existence. […] Primarily for cognitive reasons. Mathematicians simply could not make it fit their idea of what a number was supposed to be. A number was supposed to be a magnitude. √-1 is not a magnitude comparable to the magnitudes of real numbers. No tree can be √-1 units high. You cannot owe someone √-1 dollars. Numbers were supposed to be linearly ordered. √-1 is not linearly ordered with respect to other numbers." (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being, 2000)
"From a formal perspective, much about complex numbers and arithmetic seems arbitrary. From a purely algebraic point of view, i arises as a solution to the equation x^2+1=0. There is nothing geometric about this - no complex plane at all. Yet in the complex plane, the i-axis is 90° from the x-axis. Why? Complex numbers in the complex plane add like vectors. Why? Complex numbers have a weird rule of multiplication […]"
"[…] i is not a real number-not ordered anywhere relative to the real numbers! In other words, it does not even have the central property of ‘numbers’, indicating a magnitude that can be linearly compared to all other magnitudes. You can see why i has been called imaginary. It has almost none of the properties of the small natural numbers-not subitizability, not groupability, and not even relative magnitude. If i is to be a number, it is a number only by virtue of closure and the laws of arithmetic." (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being, 2000)
"Other questions must be answered as well. Why should e^πi equal, of all things, -1? e^πi has an imaginary number in it; wouldn't you therefore expect the result to be imaginary, not real? e is about differentiation, about change, and π is about circles. What do the ideas involved in change and in circles have to do with the answer? e and n are both transcendental numbers - numbers that are not roots of any algebraic equation. If you operate on one transcendental number with another and then operate on the result with an imaginary number, why should you get a simple integer like -1?" (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being", 2000)
"The complex plane is just the 90° rotation plane-the rotation plane with the structure imposed by the 90° Rotation metaphor added to it. Multiplication by i is 'just' rotation by 90°. This is not arbitrary; it makes sense. Multiplication by-1 is rotation by 180°. A rotation of 180° is the result of two 90° rotations. Since i times i is -1, it makes sense that multiplication by i should be a rotation by 90°, since two of them yield a rotation by 180°, which is multiplication by -1."
"The equation e^πi+1 = 0 is true only by virtue of a large number of profound connections across many fields. It is true because of what it means! And it means what it means because of all those metaphors and blends in the conceptual system of a mathematician who understands what it means. To show why such an equation is true for conceptual reasons is to give what we have called an idea analysis of the equation." (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being", 2000)
"The equation e^πi =-1 says that the function w= e^z, when applied to the complex number πi as input, yields the real number -1 as the output, the value of w. In the complex plane, πi is the point [0,π) - π on the i-axis. The function w=e^z maps that point, which is in the z-plane, onto the point (-1, 0) - that is, -1 on the x-axis-in the w-plane. […] But its meaning is not given by the values computed for the function w=e^z. Its meaning is conceptual, not numerical. The importance of e^πi =-1 lies in what it tells us about how various branches of mathematics are related to one another - how algebra is related to geometry, geometry to trigonometry, calculus to trigonometry, and how the arithmetic of complex numbers relates to all of them." (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being", 2000)
"The significance of e^πi+1 = 0 is thus a conceptual significance. What is important is not just the numerical values of e, π, i, 1, and 0 but their conceptual meaning. After all, e, π, i, 1, and 0 are not just numbers like any other numbers. Unlike, say, 192,563,947.9853294867, these numbers have conceptual meanings in a system of common, important nonmathematical concepts, like change, acceleration, recurrence, and self-regulation. [...] They are not mere numbers; they are the arithmetizations of concepts. When they are placed in a formula, the formula incorporates the ideas the function expresses as well as the set of pairs of complex numbers it mathematically determines by virtue of those ideas." (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being", 2000)
"We will now turn to e^πi+1 = 0. Our approach will be there as it was here. e^πi+1 = 0 uses the conceptual structure of all the cases we have discussed so far - trigonometry, the exponentials, and the complex numbers. Moreover, it puts together all that conceptual structure. In other words, all those metaphors and blends are simultaneously activated and jointly give rise to inferences that they would not give rise to separately. Our job is to see how e^πi+1 = 0 is a precise consequence that arises when the conceptual structure of these three domains is combined to form a single conceptual blend." (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being", 2000)
"[…] because imaginary time is at right angles to real time, it behaves like a fourth spatial direction. It can therefore have a much richer range of possibilities than the railroad track of ordinary real time, which can only have a beginning or an end or go around in circles. It is in this imaginary sense that time has a shape." (Stephen W Hawking, "The Universe in a Nutshell", 2001)
“One might think this means that imaginary numbers are just a mathematical game having nothing to do with the real world. From the viewpoint of positivist philosophy, however, one cannot determine what is real. All one can do is find which mathematical models describe the universe we live in. It turns out that a mathematical model involving imaginary time predicts not only effects we have already observed but also effects we have not been able to measure yet nevertheless believe in for other reasons. So what is real and what is imaginary? Is the distinction just in our minds?” (Stephen W Hawking, “The Universe in a Nutshell”, 2001).
"To describe how quantum theory shapes time and space, it is helpful to introduce the idea of imaginary time. Imaginary time sounds like something from science fiction, but it is a well-defined mathematical concept: time measured in what are called imaginary numbers. […] Imaginary numbers can then be represented as corresponding to positions on a vertical line: zero is again in the middle, positive imaginary numbers plotted upward, and negative imaginary numbers plotted downward. Thus imaginary numbers can be thought of as a new kind of number at right angles to ordinary real numbers. Because they are a mathematical construct, they don't need a physical realization […]" (Stephen W Hawking, "The Universe in a Nutshell", 2001)
"By definition, a Kähler manifold is one with a complex structure (this means in particular that the coordinates changes are holomorphic for the complex coordinates) together with a Riemannian metric which has with this complex structure the best possible link, namely that multiplication of tangent vectors by unit complex numbers preserves the metric, but moreover the complex structure is invariant under parallel transport. This is equivalent to the condition that the holonomy group be included in the unitary group, hence equivalent also to ask for the existence of a 2-form of maximal rank and of zero covariant derivative."(Marcel Berger, "A Panoramic View of Riemannian Geometry", 2003)
“If we think of square roots in the geometric manner, as we have just done, to ask for the square root of a negative quantity is like asking: ‘What is the length of the side of a square whose area is less than zero?’ This has more the ring of a Zen koan than of a question amenable to a quantitative answer.” (Barry Mazur, “Imagining Numbers”, 2003)
"How is it that -1 can have a square root? The square of a positive number is always positive, and the square of a negative number is again positive (and the square of 0 is just 0 again, so that is hardly of use to us here). It seems impossible that we can find a number whose square is actually negative." (Sir Roger Penrose, "The Road to Reality: A Complete Guide to the Laws of the Universe", 2004)
"When we get used to playing with these complex numbers, we cease to think of a + ib as a pair of things, namely the two real numbers a and b, but we think of a+ib as an entire thing on its own, and we could use a single letter, say:, to denote the whole complex number z = a+ib. It may be checked that all the normal rules of algebra are satisfied by complex numbers. In fact, all this is a good deal more straightforward than checking everything for real numbers. […] From this point of view, it seems rather extraordinary that complex numbers were viewed with suspicion for so long, whereas the much more complicated extension from the nationals to the reals had, after ancient Greek times, been generally accepted without question." (Sir Roger Penrose, "The Road to Reality: A Complete Guide to the Laws of the Universe", 2004)
"Beyond the theory of complex numbers, there is the much greater and grander theory of the functions of a complex variable, as when the complex plane is mapped to the complex plane, complex numbers linking themselves to other complex numbers. It is here that complex differentiation and integration are defined. Every mathematician in his education studies this theory and surrenders to it completely. The experience is like first love."
"Imaginary numbers are not imaginary and the theory of complex numbers is no more complex than the theory of real numbers." (Mordechai Ben-Ari, "Just a Theory: Exploring the Nature of Science", 2005)
"What a wealth of insight Euler’s formula reveals and what delicacy and precision of reasoning it exhibits. It provides a definition of complex exponentiation: It is a definition of complex exponentiation, but the definition proceeds in the most natural way, like a trained singer’s breath. It closes the complex circle once again by guaranteeing that in taking complex numbers to complex powers the mathematician always returns with complex numbers. It justifies the method of infinite series and sums. And it exposes that profound and unsuspected connection between exponential and trigonometric functions; with Euler’s formula the very distinction between trigonometric and exponential functions acquires the shimmer of a desert illusion." (David Berlinski, "Infinite Ascent: A short history of mathematics", 2005)
"[…] and unlike the physics or chemistry or engineering of today, which will almost surely appear archaic to technicians of the far future, Euler’s formula will still appear, to the arbitrarily advanced mathematicians ten thousand years hence, to be beautiful and stunning and untarnished by time." (Paul J Nahin, "Dr. Euler's Fabulous Formula: Cures Many Mathematical Ills", 2006
"Apparent Impossibilities that Are New Truths […] irrational numbers, imaginary numbers, points at infinity, curved space, ideals, and various types of infinity. These ideas seem impossible at first because our intuition cannot grasp them, but they can be captured with the help of mathematical symbolism, which is a kind of technological extension of our senses." (John Stillwell,"Yearning for the impossible: the surpnsing truths of mathematics", 2006)
"Complex analysis is a rich and textured subject. It is quite old, and its history is broad and deep. [...] Basic complex analysis is startling for its elegance and clarity. One progresses very rapidly from the basics of the Cauchy theory to profound results such as the fundamental theorem of algebra and the Riemann mapping theorem." (Steven G. Krantz, "Geometric Function Theory: Explorations in complex analysis", 2006)
"[...] complex functions are actually better behaved than real functions, and the subject of complex analysis is known for its regularity and order, while real analysis is known for wildness and pathology. A smooth complex function is predictable, in the sense that the values of the function in an arbitrarily small region determine its values everywhere. A smooth real function can be completely unpredictable [...]" (John Stillwell, "Yearning for the Impossible: The Surprising Truths of Mathematics", 2006)
"I think e^iπ+1=0 is beautiful because it is true even in the face of enormous potential constraint. The equality is precise; the left-hand side is not 'almost' or 'pretty near' or 'just about' zero, but exactly zero. That five numbers, each with vastly different origins, and each with roles in mathematics that cannot be exaggerated, should be connected by such a simple relationship, is just stunning. It is beautiful. And unlike the physics or chemistry or engineering of today, which will almost surely appear archaic to technicians of the far future, Euler's formula will still appear, to the arbitrarily advanced mathematicians ten thousand years hence, to be beautiful and stunning and untarnished by time." (Paul J Nahin, "Dr. Euler's Fabulous Formula: Cures Many Mathematical Ills", 2006)
"In fact, complex numbers are not much more complicated than reals, and many structures built on the complex numbers actually have simpler behavior than the corresponding structures built on the real numbers." (John Stillwell,"Yearning for the impossible: the surpnsing truths of mathematics", 2006)
"It is a truism that the Riemann mapping theorem allows us to transfer the complex function theory of any simply connected domain (except the plane itself) back to the unit disk, or vice versa. But many of the more delicate questions require something more. If we wish to study behavior of functions at the boundary, or growth or regularity conditions, then we must know something about the boundary behavior of the conformal mapping." (Steven G. Krantz, "Geometric Function Theory: Explorations in complex analysis", 2006)
"It is impossible for √-1 to be a real number, since its square is negative. This implies that √-1 is neither greater nor less than zero, so we cannot see √-1 on the real line. However, √-1 behaves like a number with respect to + and x. This prompts us to look elsewhere for it, and indeed we find it on another line (the imaginary axis) perpendicular to the real line." (John Stillwell,"Yearning for the impossible: the surpnsing truths of mathematics", 2006)
"Likewise, complex functions are actually better behaved than real functions, and the subject of complex analysis is known for its regularity and order, while real analysis is known for wildness and pathology A smooth complex function is predictable, in the sense that the values of the function in an arbitrarily small region determine its values everywhere. A smooth real function can be completely unpredictable for example, it can be constantly zero for a long interval, then smoothly change to the value 1." (John Stillwell, "Yearning for the Impossible: The Surprising Truths of Mathematics", 2006)
"The set of complex numbers is another example of a field. It is handy because every polynomial in one variable with integer coefficients can be factored into linear factors if we use complex numbers. Equivalently, every such polynomial has a complex root. This gives us a standard place to keep track of the solutions to polynomial equations." (Avner Ash & Robert Gross, "Fearless Symmetry: Exposing the hidden patterns of numbers", 2006)
"The word 'complex' was introduced m a well-meaning attempt to dispel the mystery surrounding 'imaginary' or 'impossible' numbers, and (presumably) because two dimensions are more complex than one Today, 'complex' no longer seems such a good choice of word. It is usually interpreted as 'complicated', and hence is almost as prejudicial as its predecessors. Why frighten people unnecessarily? If you are not sure what 'analysis' is, you won't want to know about 'complex analysis' - but it is the best part of analysis." (John Stillwell, "Yearning for the Impossible: The Surprising Truths of Mathematics", 2006)
"The worst aspect of the term 'complex' - one that condemns it to eventual extinction in my opinion - is that it is also applied to structures called 'simple'. Mathematics uses the word 'simple' as a technical term for objects that cannot be 'simplified'. Prime numbers are the kind of thing that might be called 'simple' (though in their case it is not usually done) because they cannot be written as products of smaller numbers. At any rate, some of the 'simple' structures are built on the complex numbers, so mathematicians are obliged to speak of such things as 'complex simple Lie groups'. This is an embarrassment in a subject that prides itself on consistency, and surely either the word 'simple' or the word 'complex' has to go." (John Stillwell, "Yearning for the Impossible: The Surprising Truths of Mathematics", 2006)
“To have the courage to think outside the square, we need to be intrigued by a problem. This intrigue will encourage us to use our imaginations to find solutions which are beyond our current view of the world. This was the challenge that faced mathematicians as they searched for a solution to the problem of finding meaning for the square root of a negative number, in particular √-1.” (Les Evans, “Complex Numbers and Vectors”, 2006)
“Unfortunately, if we were to use geometry to explore the concept of the square root of a negative number, we would be setting a boundary to our imagination that would be difficult to cross. To represent -1 using geometry would require us to draw a square with each side length being less than zero. To be asked to draw a square with side length less than zero sounds similar to the Zen Buddhists asking ‘What is the sound of one hand clapping?’” (Les Evans, “Complex Numbers and Vectors”, 2006)
"If we refused to use complex numbers out of stubbornness disguised as some kind of bogus philosophical objection, a solution to a whole range of important problems would remain forever out of reach.[...] The plane of the complex numbers is the natural arena of discourse for much if not most of mathematics." (Peter M Higgins, "Number Story: From Counting to Cryptography", 2008)
"Nonetheless, some hesitation persisted. After all, the very word imaginary betrays ambivalence, and suggests that in our heart of hearts we do not believe these numbers exist. On the other hand, by calling every number representable by a decimal expansion real, we are making the psychological distinction more stark. Indeed the adjective imaginary is a somewhat unfortunate one - although an intriguing name, some students’ perceptions are so colored by the word that they consequently fail to come to grips with the idea." (Peter M Higgins, "Number Story: From Counting to Cryptography", 2008)
"Perhaps the greatest legacy of the solution of the cubic was the arrival, without invitation, of the imaginary number i into the world of mathematics." (Peter M Higgins, "Number Story: From Counting to Cryptography", 2008)
"The beauty of the complex plane is that we may finally carry out all our mathematical work in a single number arena. However, although there may be no pressing mathematical difficulty that is driving us further, we can ask the question whether or not it is possible to go beyond the complex plane into some larger realm of number." (Peter M Higgins, "Number Story: From Counting to Cryptography", 2008)
"[...] the use of complex numbers reveals a connection between the exponential, or power function and the seemingly unrelated trigonometric functions. Without passing through the portal offered by the square root of minus one, the connection may be glimpsed, but not understood. The so-called hyperbolic functions arise from taking what are known as the even and odd parts of the exponential function." (Peter M Higgins, "Number Story: From Counting to Cryptography", 2008)
"How are we to explain the contrast between the matter-of-fact way in which √-1 and other imaginary numbers are accepted today and the great difficulty they posed for learned mathematicians when they first appeared on the scene? One possibility is that mathematical intuitions have evolved over the centuries and people are generally more willing to see mathematics as a matter of manipulating symbols according to rules and are less insistent on interpreting all symbols as representative of one or another aspect of physical reality. Another, less self-congratulatory possibility is that most of us are content to follow the computational rules we are taught and do not give a lot of thought to rationales." (Raymond S Nickerson, "Mathematical Reasoning: Patterns, Problems, Conjectures, and Proofs", 2009)
No comments:
Post a Comment