18 December 2025

On Vectors (1950-1999)

"A regular curve on a Riemannian manifold is a curve with a continuously turning nontrivial tangent vector. A regular homotopy is a homotopy which at every stage is a regular curve, keeps end points and directions fixed and such that the tangent vector moves continuously with the homotopy. A regular curve is closed if its initial point and tangent  coincides with its end point and tangent." (Steven Smale,"Regular Curves on Riemann Manifolds", 1956)

"To know the quantum mechanical state of a system implies, in general, only statistical restrictions on the results of measurements. It seems interesting to ask if this statistical element be thought of as arising, as in classical statistical mechanics, because the states in question are averages over better defined states for which individually the results would be quite determined. These hypothetical 'dispersion free' states would be specified not only by the quantum mechanical state vector but also by additional 'hidden variables' - 'hidden' because if states with prescribed values of these variables could actually be prepared, quantum mechanics would be observably inadequate." (John S Bell, "On the problem of hidden variables in quantum mechanics" [in "Reviews of Modern Physics"], 1966)

"The mathematical models for many physical systems have manifolds as the basic objects of study, upon which further structure may be defined to obtain whatever system is in question. The concept generalizes and includes the special cases of the cartesian line, plane, space, and the surfaces which are studied in advanced calculus. The theory of these spaces which generalizes to manifolds includes the ideas of differentiable functions, smooth curves, tangent vectors, and vector fields. However, the notions of distance between points and straight lines" (or shortest paths) are not part of the idea of a manifold but arise as consequences of additional structure, which may or may not be assumed and in any case is not unique." (Richard L Bishop & Samuel I Goldberg, "Tensor Analysis on Manifolds", 1968)

"My definition of global analysis is simply the study of differential equations, both ordinary and partial, on manifolds and vector space bundles. Thus one might consider global analysis as differential equations from a global, or topological point of view." (Steven Smale, "What is global analysis?", American Mathematical Monthly Vol. 76 (1), 1969)

"Many cumbersome developments in the standard treatments of mechanics can be simplified and better understood when formulated with modern conceptual tools, as in the well-known case of the use of the 'universal' definition of tensor products of vector spaces to simplify some of the notational excesses of tensor analysis as traditionally used in relativity theory" (Saunders Mac Lane, "Hamiltonian Mechanics and Geometry", The American Mathematical Monthly Vol. 77 (6), 1970)

"[...] gradually and unwittingly mathematicians began to introduce concepts that had little or no direct physical meaning. Of these, negative and complex numbers were most troublesome. It was because these two types of numbers had no 'reality' in nature that they were still suspect at the beginning of the nineteenth century, even though freely utilized by then. The geometrical representation of negative numbers as points or vectors in the complex plane, which, as Gauss remarked of the latter, gave them intuitive meaning and so made them admissible, may have delayed the realization that mathematics deals with man-made concepts. But then the introduction of quaternions, non-Euclidean geometry, complex elements in geometry, n-dimensional geometry, bizarre functions, and transfinite numbers forced the recognition of the artificiality of mathematics." (Morris Kline, "Mathematical Thought from Ancient to Modern Times", 1972)

"The physicist who states a law of nature with the aid of a mathematical formula is abstracting a real feature of a real material world, even if he has to speak of numbers, vectors, tensors, state-functions, or whatever to make the abstraction." (Hilary Putnam, "Mathematics, matter, and method", 1975)

"The vector equilibrium is the true zero reference of the energetic mathematics. Zero pulsation in the vector equilibrium is the nearest approach we will ever know to eternity and god: the zero phase of conceptual integrity inherent in the positive and negative asymmetries that propagate the differentials of consciousness." (Buckminster Fuller, "Synergetics: Explorations in the Geometry of Thinking", 1975)

"All nature is a continuum. The endless complexity of life is organized into patterns which repeat themselves - theme and variations - at each level of system. These similarities and differences are proper concerns for science. From the ceaseless streaming of protoplasm to the many-vectored activities of supranational systems, there are continuous flows through living systems as they maintain their highly organized steady states." (James G Miller, "Living Systems", 1978)

"While translations are well animated by using vectors, rotation animation can be improved by using the progenitor of vectors, quaternions. [...] By an odd quirk of mathematics, only systems of two, four, or eight components will multiply as Hamilton desired; triples had been his stumbling block." (Ken Shoemake, "Animating Rotation with Quaternion Curves", ACM SIGGRAPH Computer Graphics Vol. 19 (3), 1985)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Emmy Noether

"In the judgment of the most competent living mathematicians, Fraulein Noether was the most significant mathematical genius thus far pr...