04 December 2025

On Werner Heisenberg

"Prediction of the future is possible only in systems that have stable parameters like celestial mechanics. The only reason why prediction is so successful in celestial mechanics is that the evolution of the solar system has ground to a halt in what is essentially a dynamic equilibrium with stable parameters. Evolutionary systems, however, by their very nature have unstable parameters. They are disequilibrium systems and in such systems our power of prediction, though not zero, is very limited because of the unpredictability of the parameters themselves. If, of course, it were possible to predict the change in the parameters, then there would be other parameters which were unchanged, but the search for ultimately stable parameters in evolutionary systems is futile, for they probably do not exist… Social systems have Heisenberg principles all over the place, for we cannot predict the future without changing it." (Kenneth E Boulding, Evolutionary Economics, 1981)

"Many scientists have tried to make determinism and complementarity the basis of conclusions that seem to me weak and dangerous; for instance, they have used Heisenberg’s uncertainty principle to bolster up human free will, though his principle, which applies exclusively to the behavior of electrons and is the direct result of microphysical measurement techniques, has nothing to do with human freedom of choice. It is far safer and wiser that the physicist remain on the solid ground of theoretical physics itself and eschew the shifting sands of philosophic extrapolations." (Louis-Victor de Broglie, "New Perspectives in Physics", 1962)

"In both social and natural sciences, the body of positive knowledge grows by the failure of a tentative hypothesis to predict phenomena the hypothesis professes to explain; by the patching up of that hypothesis until someone suggests a new hypothesis that more elegantly or simply embodies the troublesome phenomena, and so on ad infinitum. In both, experiment is sometimes possible, sometimes not (witness meteorology). In both, no experiment is ever completely controlled, and experience often offers evidence that is the equivalent of controlled experiment. In both, there is no way to have a self-contained closed system or to avoid interaction between the observer and the observed. The Gödel theorem in mathematics, the Heisenberg uncertainty principle in physics, the self-fulfilling or self-defeating prophecy in the social sciences all exemplify these limitations." (Milton Friedman, "Inflation and Unemployment", 1976) 

"In physics, there are numerous phenomena that are said to be 'true on all scales', such as the Heisenberg uncertainty relation, to which no exception has been found over vast ranges of the variables involved (such as energy versus time, or momentum versus position). But even when the size ranges are limited, as in galaxy clusters (by the size of the universe) or the magnetic domains in a piece of iron near the transition point to ferromagnetism (by the size of the magnet), the concept true on all scales is an important postulate in analyzing otherwise often obscure observations." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"Heisenberg’s principle must be considered a special case of the complementarity principle […]. This states that an experiment on one aspect of a system (of atomic dimensions) destroys the possibility of learning about a complementarity aspect of the same system. Together these principles have shocking consequences for the comprehension of entropy and determinism." (Lars Skyttner, "General Systems Theory: Ideas and Applications", 2001) 

"Solvable Lie algebras are close to both upper triangular matrices and commutative Lie algebras. In contrast to this, semisimple Lie algebras are as far as possible from being commutative. By Levi’s decomposition theorem, any Lie algebra is built out of a solvable and a semisimple one. The nontrivial prototype of a solvable Lie algebra is the Heisenberg algebra." (Eberhard Zeidler, "Quantum Field Theory I: Gauge Theory", 2006)

"The quantum entered physics with a jolt. It didn’t fit anywhere; it made no sense; it contradicted everything we thought we knew about nature. Yet the data seemed to demand it. [...] The story of Werner Heisenberg and his science is the story of the desperate failures and ultimate triumphs of the small band of brilliant physicists who - during an incredibly intense period of struggle with the data, the theories, and each other during the 1920s - brought about a revolutionary new understanding of the atomic world known as quantum mechanics." (David C. Cassidy, "Beyond Uncertainty: Heisenberg, Quantum Physics, and the Bomb", 2009)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Werner Heisenberg

"Prediction of the future is possible only in systems that have stable parameters like celestial mechanics. The only reason why predict...