"Of all mathematical disciplines, algebra has changed the most. While earlier generations of geometers would recognize - if not immediately understand - much of modern geometry as an extension of the subject that they had studied, it is doubtful that earlier generations of algebraists would recognize most of modern algebra as in any way related to the subject to which they devoted their time." (John Tabak, "Beyond Geometry: A new mathematics of space and form", 2011)
"Quantum theory may be formulated using Hilbert spaces over any of the three associative normed division algebras: the real numbers, the complex numbers and the quaternions. Indeed, these three choices appear naturally in a number of axiomatic approaches. However, there are internal problems with real or quaternionic quantum theory. Here we argue that these problems can be resolved if we treat real, complex and quaternionic quantum theory as part of a unified structure. Dyson called this structure the ‘three-fold way’ […] This three-fold classification sheds light on the physics of time reversal symmetry, and it already plays an important role in particle physics." (John C Baez, "Division Algebras and Quantum Theory", 2011)
"It turns out pi is different. Not only is it incapable of being expressed as a fraction, but in fact pi fails to satisfy any algebraic relationship whatsoever. What does pi do? It doesn’t do anything. It is what it is. Numbers like this are called transcendental" (Latin for 'climbing beyond'). Transcendental numbers - and there are lots of them - are simply beyond the power of algebra to describe." (Paul Lockhart, "Measurement", 2012)
"It turns out π is different. Not only is it incapable of being expressed as a fraction, but in fact π fails to satisfy any algebraic relationship whatsoever. What does π do? It doesn’t do anything. It is what it is. Numbers like this are called transcendental" (Latin for 'climbing beyond'). Transcendental numbers - and there are lots of them - are simply beyond the power of algebra to describe." (Paul Lockhart, "Measurement", 2012)
"Mathematics is an art, and creative genius a mystery. Of course, technique helps - good painters understand light and shadow, good musicians have a thorough knowledge of functional harmony, and good mathematicians can untangle algebraic information - but a beautiful piece of mathematics is just as hard to make as a beautiful portrait or sonata." (Paul Lockhart, "Measurement", 2012)
"The standard view among most theoretical physicists, engineers and economists is that mathematical models are syntactic" (linguistic) items, identified with particular systems of equations or relational statements. From this perspective, the process of solving a designated system of" (algebraic, difference, differential, stochastic, etc.) equations of the target system, and interpreting the particular solutions directly in the context of predictions and explanations are primary, while the mathematical structures of associated state and orbit spaces, and quantity algebras – although conceptually important, are secondary." (Zoltan Domotor, "Mathematical Models in Philosophy of Science" [Mathematics of Complexity and Dynamical Systems, 2012])
"The tangling and untangling of numerical relationships is called algebra. […] The point of doing algebra is not to solve equations; it’s to allow us to move back and forth between several equivalent representations, depending on the situation at hand and depending on our taste. In this sense, all algebraic manipulation is psychological. The numbers are making themselves known to us in various ways, and each different representation has its own feel to it and can give us ideas that might not occur to us otherwise." (Paul Lockhart, "Measurement", 2012)
"Galois and Abel independently discovered the basic idea of symmetry. They were both coming at the problem from the algebra of polynomials, but what they each realized was that underlying the solution of polynomials was a fundamental problem of symmetry. The way that they understood symmetry was in terms of permutation groups. A permutation group is the most fundamental structure of symmetry. […] permutation groups are the master groups of symmetry: every kind of symmetry is encoded in the structure of the permutation group." (Mark C Chu-Carroll, "Good Math: A Geek’s Guide to the Beauty of Numbers, Logic, and Computation", 2013)
"You can ask the question about these ancient topics, such as perfect numbers and amicable numbers [...] and ask, are these good problems [...] studying them helped us develop all of elementary number theory and from elementary number theory we developed the rest of number theory, and also you can argue that from elementary number theory came algebra." (Carl B Pomerance, "Paul Erdős and the Rise of Statistical Thinking in Elementary Number Theory", [lecture] 2013)
"[…] regard it in fact as the great advantage of the mathematical technique that it allows us to describe, by means of algebraic equations, the general character of a pattern even where we are ignorant of the numerical values which will determine its particular manifestation." (Friedrich A von Hayek, "The Market and Other Orders", 2014)
"Algebraic geometry uses the geometric intuition which arises from looking at varieties over the complex and real case to deduce important results in arithmetic algebraic geometry where the complex number field is replaced by the field of rational numbers or various finite number fields." (Raymond O Wells Jr, "Differential and Complex Geometry: Origins, Abstractions and Embeddings", 2017)
"Much of the final resistance to complex numbers faded as it became clear that their behavior posed no threat to the rules and operations of algebra. On the contrary, quite often the complex realm opened paths that made already existing results easier to prove." (David Perkins, "φ, π, e & i", 2017)
"The primary aspects of the theory of complex manifolds are the geometric structure itself, its topological structure, coordinate systems, etc., and holomorphic functions and mappings and their properties. Algebraic geometry over the complex number field uses polynomial and rational functions of complex variables as the primary tools, but the underlying topological structures are similar to those that appear in complex manifold theory, and the nature of singularities in both the analytic and algebraic settings is also structurally very similar." (Raymond O Wells Jr, "Differential and Complex Geometry: Origins, Abstractions and Embeddings", 2017)
"When we use algebraic notation in statistical models, the problem becomes more complicated because we cannot 'observe' a probability and know its exact number. We can only estimate probabilities on the basis of observations." (David S Salsburg, "Errors, Blunders, and Lies: How to Tell the Difference", 2017)
"The calculus of causation consists of two languages: causal diagrams, to express what we know, and a symbolic language, resembling algebra, to express what we want to know. The causal diagrams are simply dot-and-arrow pictures that summarize our existing scientific knowledge. The dots represent quantities of interest, called 'variables', and the arrows represent known or suspected causal relationships between those variables - namely, which variable 'listens' to which others." (Judea Pearl & Dana Mackenzie, "The Book of Why: The new science of cause and effect", 2018)
No comments:
Post a Comment