“The origin and the immediate purpose for the introduction of complex number into mathematics is the theory of creating simpler dependency laws (slope laws) between complex magnitudes by expressing these laws through numerical operations. And, if we give these dependency laws an expanded range by assigning complex values to the variable magnitudes, on which the dependency laws are based, then what makes its appearance is a harmony and regularity which is especially indirect and lasting.” (Bernhard Riemann, “Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse”, 1851)
“The difficulties which so many have felt in the doctrine of Negative and Imaginary Quantities in Algebra forced themselves long ago on my attention […] And while agreeing with those who had contended that negatives and imaginaries were not properly quantities at all, I still felt dissatisfied with any view which should not give to them, from the outset, a clear interpretation and meaning [...] It early appeared to me that these ends might be attained by our consenting to regard Algebra as being no mere Art, nor Language, nor primarily a Science of Quantity; but rather as the Science of Order in Progression.” (William R Hamilton, “Lectures on Quaternions: Containing a Systematic Statement of a New Mathematical Method… “, 1853)
“Nearly fifty years had passed without any progress on the question of analytic representation of an arbitrary function, when an assertion of Fourier threw new light on the subject. Thus a new era began for the development of this part of Mathematics and this was heralded in a stunning way by major developments in mathematical Physics.” (Bernhard Riemann, 1854)
"The employment of the uninterpretable symbol √-1 the intermediate processes of trigonometry furnishes an illustration of what has been said. I apprehend that there is no mode of explaining that application which does not covertly assume the very principle in question." (George Boole, "Laws of Thought", 1854)
"A theory of those functions [algebraic, circular or exponential, elliptical and Abelian] on the basis of the foundations here established would determine the configuration of the function (i.e., its value for each value of the argument) independently of any definition by means of operations [analytical expressions]. Therefore one would add, to the general notion of a function of a complex variable, only those characteristics that are necessary for determining the function, and only then would one go over to the different expressions that the function can be given." (Bernhard Riemann, "Theorie der Abel'schen Functionen", Journal für die reine und angewandte Mathematik 54, 1857)
“The conception of the inconceivable [imaginary], this measurement of what not only does not, but cannot exist, is one of the finest achievements of the human intellect. No one can deny that such imaginings are indeed imaginary. But they lead to results grander than any which flow from the imagination of the poet. The imaginary calculus is one of the master keys to physical science. These realms of the inconceivable afford in many places our only mode of passage to the domains of positive knowledge. Light itself lay in darkness until this imaginary calculus threw light upon light. And in all modern researches into electricity, magnetism, and heat, and other subtile physical inquiries, these are the most powerful instruments.” (Thomas Hill, “The Imagination in Mathematics”, North American Review Vol. 85, 1857
“[... ] the notion of a negative magnitude has become quite a familiar one […] But it is far otherwise with the notion which is really the fundamental one (and I cannot too strongly emphasize the assertion) underlying and pervading the whole of modern analysis and geometry, that of imaginary magnitude in analysis and of imaginary space (or space as a locus in quo of imaginary points and figures) in geometry: I use in each case the word imaginary as including real. This has not been, so far as I am aware, a subject of philosophical discussion or inquiry. […] considering the prominent position which the notion occupies-say even that the conclusion were that the notion belongs to mere technical mathematics, or has reference to nonentities in regard to which no science is possible, still it seems to me that (as a subject of philosophical discussion) the notion ought not to be thus ignored; it should at least be shown that there is a right to ignore it.” (Arthur Cayley, [address before the meeting of the British Association at Southport] 1870)
"That such comparisons with non-arithmetic notions have furnished the immediate occasion for the extension of the number-concept may, in a general way, be granted (though this was certainly not the case in the introduction of complex numbers); but this surely is no sufficient ground for introducing these foreign notions into arithmetic, the science of numbers." (Richard Dedekind, "Stetigkeit und irrationale Zahlen", 1872)
“When we consider that the whole of geometry rests ultimately on axioms which derive their validity from the nature of our intuitive faculty, we seem well justified in questioning the sense of imaginary forms, since we attribute to them properties which not infrequently contradict all our intuitions.” (Gottlob Frege, “On a Geometrical Representation of Imaginary forms in the Plane”, 1873)
“[…] with few exceptions all the operations and concepts that occur in the case of real numbers can indeed be carried over unchanged to complex ones. However, the concept of being greater cannot very well be applied to complex numbers. In the case of integration, too, there appear differences which rest on the multplicity of possible paths of integration when we are dealing with complex variables. Nevertheless, the large extent to which imaginary forms conform to the same laws as real ones justifies the introduction of imaginary forms into geometry.” (Gottlob Frege, “On a Geometrical Representation of Imaginary forms in the Plane”, 1873)
“When we consider complex numbers and their geometrical representation, we leave the field of the original concept of quantity, as contained especially in the quantities of Euclidean geometry: its lines, surfaces and volumes. According to the old conception, length appears as something material which fills the straight line between its end points and at the same time prevents another thing from penetrating into its space by its rigidity. In adding quantities, we are therefore forced to place one quantity against another. Something similar holds for surfaces and solid contents. The introduction of negative quantities made a dent in this conception, and imaginary quantities made it completely impossible. Now all that matters is the point of origin and the end point; whether there is a continuous line between them, and if so which, appears to make no difference whatsoever; the idea of filling space has been completely lost. All that has remained is certain general properties of addition, which now emerge as the essential characteristic marks of quantity. The concept has thus gradually freed itself from intuition and made itself independent. This is quite unobjectionable, especially since its earlier intuitive character was at bottom mere appearance. Bounded straight lines and planes enclosed by curves can certainly be intuited, but what is quantitative about them, what is common to lengths and surfaces, escapes our intuition.” (Gottlob Frege, “Methods of Calculation based on an Extension of the Concept of Quantity”, 1874)
No comments:
Post a Comment