19 December 2025

On Numbers: On Complex Numbers (1825-1849)

"The true meaning of √-1 reveals itself vividly before my soul, but it will be very difficult to express it in words, which can give only an image suspended in the air." (Carl F Gauss, [Letter to Peter Hanson] 1825)

"We will only announce to geometers a dozen memoirs by M. Cauchy on various questions in  mathematical analysis. Without doubt the scholarly and industrious author of these writings does not count on many readers; a general desertion seems to condemn his works to disuse. He might as well content himself with knowing, and write nothing at all. The coldness in the mathematical public, which is not however the subject of a whim, is not a matter of indifference: if it was possible to know the motive, whatever it might be, one would know something more about the methods of the sciences or the profession of the scholar. It is not perhaps the first time that a remarkable and ever-active talent has entirely wasted its forces and its time – a strange phenomenon that one notices with regret." (Claude–Joseph Ferry, Revue encyclopedique 35, 1827)

“Moreover, the whole method has the essential disadvantage that it occupies the mind with the distinction of a great number of cases that can be recognized only by inner intuition, and thus neutralizes an important part of that which algebra is supposed to accomplish, which is relieving the power of inner intuition. Finally, in such a treatment algebra loses a great part of the generality that it can obtain by the mutual connection of different problems, which becomes evident so easily when one uses isolated negative quantities. [...] Since imaginary quantities have to occur, science would certainly not win that much by avoiding negative quantities than it would lose in terms of clarity and generality.” (Johann P W Stein,  “Die Elemente der Algebra: Erster Cursus”, 1828) 

"Complete knowledge of the nature of an analytic function must also include insight into its behavior for imaginary values of the arguments. Often the latter is indispensable even for a proper appreciation of the behavior of the function for real arguments. It is therefore essential that the original determination of the function concept be broadened to a domain of magnitudes which includes both the real and the imaginary quantities, on an equal footing, under the single designation complex numbers." (Carl F Gauss, cca. 1831)

"[geometrical representation of complex numbers] completely established the intuitive meaning of complex numbers, and more is not needed to admit these quantities into the domain of arithmetic." (Carl F Gauss, 1831) 

"Originally assuming the concept of the absolute integers, it extended its domain step by step; integers were supplemented by fractions, rational numbers by irrational numbers, positive numbers by negative numbers, and real numbers by imaginary numbers. This advance, however, occurred initially with a fearfully hesitant step. The first algebraists preferred to call negative roots of equations false roots, and it is precisely these where the problem to which they refer was always termed in such a way as to ensure that the nature of the quantity sought did not admit any opposite.” (Carl F Gauss, “Theoria residuorum biquadraticum. Commentatio secunda. [Selbstanzeige]”, Göttingische gelehrte Anzeigen 23 (4), 1831)

"Our general arithmetic, so far surpassing in extent the geometry of the ancients, is entirely the creation of modern times. Starting originally from the notion of absolute integers, it has gradually enlarged its domain. To integers have been added fractions, to rational quantities the irrational, to positive the negative .and to the real the imaginary. This advance, however, has always been made at first with timorous and hesitating step. The early algebraists called the negative roots of equations false roots, and these are indeed so when the problem to which they relate has been stated in such a form that the character of the quantity sought allows of no opposite. But just as in general arithmetic no one would hesitate to admit fractions, although there are so many countable things where a fraction has no meaning, so we ought not to deny to, negative numbers the rights accorded to positive simply because innumerable things allow no opposite. The reality of negative numbers is sufficiently justified since in innumerable other cases they find an adequate substratum. This has long been admitted, but the imaginary quantities - formerly and occasionally now, though improperly, called impossible-as opposed to real quantities are still rather tolerated than fully naturalized, and appear more like an empty play upon symbols to which a thinkable substratum is denied unhesitatingly by those who would not depreciate the rich contribution which this play upon symbols has made to the treasure of the relations of real quantities." (Carl F Gauss, "Theoria residuorum biquadraticorum, Commentatio secunda", Göttingische gelehrte Anzeigen, 1831)

"That this subject [imaginary numbers] has hitherto been surrounded by mysterious obscurity, is to be attributed largely to an ill adapted notation. If we call +1, -1, and √-1 had been called direct, inverse and lateral units, instead of positive, negative, and imaginary (or impossible) units, such an obscurity would have been out of the question." (Carl F Gauss, “Theoria residuorum biquadraticum. Commentatio secunda", Göttingische gelehrte Anzeigen 23 (4), 1831)

"We have shown the symbol √-a to be void of meaning, or rather self-contradictory and absurd." (Augustus De Morgan, 1831)

"If we then compare the position in which we stand with respect to divergent series, with that in which we stood a few years ago with respect to impossible quantities [that is, complex numbers], we shall find a perfect similarity […] It became notorious that such use [of complex numbers] generally led to true results, with now and then an apparent exception. […] But at last came the complete explanation of the impossible quantity, showing that all the difficulty had arisen from too great limitation of definitions." (Augustus de Morgan, Penny Cyclopaedia, cca. 1833-1843)

"It is greatly to be lamented that this virtue of the real numbers [the ordinary integers], to be decomposable into prime factors, always the same ones [...]  does not also belong to the complex numbers [complex integers]; were this the case, the whole theory [...] could easily be brought to its conclusion. For this reason, the complex numbers we have been considering seem imperfect, and one may well ask whether one ought not to look for another kind which would preserve the analogy with the real numbers with respect to such a fundamental property." (Ernst E Kummer, 1844) 

"There seems to me to be something analogous to polarized intensity in the pure imaginary part; and to unpolarized energy (indifferent to direction) in the real part of a quaternion: and thus we have some slight glimpse of a future Calculus of Polarities. This is certainly very vague […]" (Sir William R Hamilton, "On Quaternions; or on a new System of Imaginaries in Algebra", 1844) 

“We completely repudiate the symbol √-1, abandoning it without regret because we do not know what this alleged symbolism signifies nor what meaning to give to it.” (Augustin-Louis Cauchy, 1847)

"Those who can, in common algebra, find a square root of -1, will be at no loss to find a fourth dimension in space in which ABC may become ABCD: or, if they cannot find it, they have but to imagine it, and call it an impossible dimension, subject to all the laws of the three we find possible. And just as √-1 in common algebra, gives all its significant combinations true, so would it be with any number of dimensions of space which the speculator might choose to call into impossible existence." (Augustus De Morgan, "Trigonometry and Double Algebra", 1849)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Numbers: On Complex Numbers (Unsourced)

"For centuries [the concept of complex numbers] figured as a sort of mystic bond between reason and imagination.” (Tobias Dantzig) “I h...