18 April 2022

Euclidean Geometry

[…] the way in which I have proceeded does not lead to the desired goal, the goal that you declare you have reached, but instead to a doubt of the validity of [Euclidean] geometry. I have certainly achieved results which most people would look upon as proof, but which in my eyes prove almost nothing; if, for example, one can prove that there exists a right triangle whose area is greater than any given number, then I am able to establish the entire system of [Euclidean] geometry with complete rigor. Most people would certainly set forth this theorem as an axiom; I do not do so, though certainly it may be possible that, no matter how far apart one chooses the vertices of a triangle, the triangle's area still stays within a finite bound. I am in possession of several theorems of this sort, but none of them satisfy me." (Carl F Gauss, 1799) [answer to a letter from Farkas Bolyai in which Bolyai claimed to have proved Euclid's fifth postulate]

"When we consider complex numbers and their geometrical representation, we leave the field of the original concept of quantity, as contained especially in the quantities of Euclidean geometry: its lines, surfaces and volumes. According to the old conception, length appears as something material which fills the straight line between its end points and at the same time prevents another thing from penetrating into its space by its rigidity. In adding quantities, we are therefore forced to place one quantity against another. Something similar holds for surfaces and solid contents. The introduction of negative quantities made a dent in this conception, and imaginary quantities made it completely impossible. Now all that matters is the point of origin and the end point; whether there is a continuous line between them, and if so which, appears to make no difference whatsoever; the idea of filling space has been completely lost. All that has remained is certain general properties of addition, which now emerge as the essential characteristic marks of quantity. The concept has thus gradually freed itself from intuition and made itself independent. This is quite unobjectionable, especially since its earlier intuitive character was at bottom mere appearance. Bounded straight lines and planes enclosed by curves can certainly be intuited, but what is quantitative about them, what is common to lengths and surfaces, escapes our intuition." (Gottlob Frege,"Methods of Calculation based on an Extension of the Concept of Quantity", 1874)

"Everything in physical science, from the law of gravitation to the building of bridges, from the spectroscope to the art of navigation, would be profoundly modified by any considerable inaccuracy in the hypothesis that our actual space is Euclidean. The observed truth of physical science, therefore, constitutes overwhelming empirical evidence that this hypothesis is very approximately correct, even if not rigidly true." (Bertrand Russell,"Foundations of Geometry", 1897)

"But it is a third geometry from which quantity is completely excluded and which is purely qualitative; this is analysis situs. In this discipline, two figures are equivalent whenever one can pass from one to the other by a continuous deformation; whatever else the law of this deformation may be, it must be continuous. Thus, a circle is equivalent to an ellipse or even to an arbitrary closed curve, but it is not equivalent to a straight-line segment since this segment is not closed. A sphere is equivalent to any convex surface; it is not equivalent to a torus since there is a hole in a torus and in a sphere there is not. Imagine an arbitrary design and a copy of this same design executed by an unskilled draftsman; the properties are altered, the straight lines drawn by an inexperienced hand have suffered unfortunate deviations and contain awkward bends. From the point of view of metric geometry, and even of projective geometry, the two figures are not equivalent; on the contrary, from the point of view of analysis situs, they are." (Henri Poincaré,"Dernières pensées", 1913)

"The disadvantage of differential geometry, as compared with Euclidean or projective geometry and also topology, is that we are not in a position to found it on invariant basic concepts (fundamental relations) and axioms therefor. The situation is no different for conformal geometry on a Riemann surface." (Hermann Weyl, "The Concept of a Riemann Surface", 1913)

"The number was first studied in respect of its rationality or irrationality, and it was shown to be really irrational. When the discovery was made of the fundamental distinction between algebraic and transcendental numbers, i. e. between those numbers which can be, and those numbers which cannot be, roots of an algebraical equation with rational coefficients, the question arose to which of these categories the number π belongs. It was finally established by a method which involved the use of some of the most modern of analytical investigation that the number π was transcendental. When this result was combined with the results of a critical investigation of the possibilities of a Euclidean determination, the inferences could be made that the number π, being transcendental, does not admit of a construction either by a Euclidean determination, or even by a determination in which the use of other algebraic curves besides the straight line and the circle are permitted." (Ernest W Hobson, "Squaring the Circle", 1913)

"The discovery of Minkowski […] is to be found […] in the fact of his recognition that the four-dimensional space-time continuum of the theory of relativity, in its most essential formal properties, shows a pronounced relationship to the three-dimensional continuum of Euclidean geometrical space. In order to give due prominence to this relationship, however, we must replace the usual time co-ordinate t by an imaginary magnitude, √-1*ct, proportional to it. Under these conditions, the natural laws satisfying the demands of the (special) theory of relativity assume mathematical forms, in which the time co-ordinate plays exactly the same role as the three space-coordinates. Formally, these four co-ordinates correspond exactly to the three space co-ordinates in Euclidean geometry." (Albert Einstein,"Relativity: The Special and General Theory", 1920)

"The scene of action of reality is not a three-dimensional Euclidean space but rather a four-dimensional world, in which space and time are linked together indissolubly. However deep the chasm may be that separates the intuitive nature of space from that of time in our experience, nothing of this qualitative difference enters into the objective world which physics endeavors to crystallize out of direct experience. It is a four-dimensional continuum, which is neither 'time' nor 'space'. Only the consciousness that passes on in one portion of this world experiences the detached piece which comes to meet it and passes behind it as history, that is, as a process that is going forward in time and takes place in space." (Hermann Weyl, "Space, Time, Matter", 1922)

"Euclidean geometry can be easily visualized; this is the argument adduced for the unique position of Euclidean geometry in mathematics. It has been argued that mathematics is not only a science of implications but that it has to establish preference for one particular axiomatic system. Whereas physics bases this choice on observation and experimentation, i. e., on applicability to reality, mathematics bases it on visualization, the analogue to perception in a theoretical science. Accordingly, mathematicians may work with the non-Euclidean geometries, but in contrast to Euclidean geometry, which is said to be intuitively understood," these systems consist of nothing but 'logical relations' or 'artificial manifolds'. They belong to the field of analytic geometry, the study of manifolds and equations between variables, but not to geometry in the real sense which has a visual significance." (Hans Reichenbach, "The Philosophy of Space and Time", 1928)

"Thus we do not try to prove the existence of the external world - we discover it, because the fundamental power of words or other symbols to represent events [...] permits us to put forward hypotheses and test their truth by reference to experience. [..] A particular type of symbolism may always fail in a particular case, as Euclidean geometry apparently fails to represent stellar space; but if all types of symbolism always failed, we should be unable to recognise any objects or exist at all. (Kenneth Craik, "The Nature of Explanation", 1943)

"Every branch of geometry can be defined as the study of properties that are unaltered when a specified figure is given specified symmetry transformations. Euclidian plane geometry, for instance, concerns the study of properties that are 'invariant' when a figure is moved about on the plane, rotated, mirror reflected, or uniformly expanded and contracted. Affine geometry studies properties that are invariant when a figure is 'stretched' in a certain way. Projective geometry studies properties invariant under projection. Topology deals with properties that remain unchanged even when a figure is radically distorted in a manner similar to the deformation of a figure made of rubber." (Martin Gardner, "Aha! Insight", 1978)

"Geometry and topology most often deal with geometrical figures, objects realized as a set of points in a Euclidean space (maybe of many dimensions). It is useful to view these objects not as rigid (solid) bodies, but as figures that admit continuous deformation preserving some qualitative properties of the object. Recall that the mapping of one object onto another is called continuous if it can be determined by means of continuous functions in a Cartesian coordinate system in space. The mapping of one figure onto another is called homeomorphism if it is continuous and one-to-one, i.e. establishes a one-to-one correspondence between points of both figures." (Anatolij Fomenko, "Visual Geometry and Topology", 1994)

"Algebraic topology studies properties of a narrower class of spaces, - basically the classical objects of mathematics: spaces given by systems of algebraic and functional equations, surfaces lying in Euclidean space, and other sets which in mathematics are called manifolds. Examining the narrower class of spaces permits deeper penetration into their structure. (Michael I Monastyrsky, "Riemann, Topology, and Physics", 1999)

"Practical geometry is an empirical undertaking, living and breathing and sweating in the real world where measurements are always approximate and things are fudged or smeared or jumbled up. Within Euclidean geometry points are concentrated, lines straightened, angles narrowed; idealizations are made, and some parts of experience discarded and other parts embraced. (David Berlinski, "Infinite Ascent: A short history of mathematics", 2005)

"Roughly speaking, a manifold is essentially a space that is locally similar to the Euclidean space. This resemblance permits differentiation to be defined. On a manifold, we do not distinguish between two different local coordinate systems. Thus, the concepts considered are just those independent of the coordinates chosen. This makes more sense if we consider the situation from the physics point of view. In this interpretation, the systems of coordinates are systems of reference." (Ovidiu Calin & Der-Chen Chang, "Geometric Mechanics on Riemannian Manifolds : Applications to partial differential equations", 2005)

"When real numbers are used as coordinates, the number of coordinates is the dimension of the geometry. This is why we call the plane two-dimensional and space three-dimensional. However, one can also expect complex numbers to be useful, knowing their geometric properties […] What is remarkable is that complex numbers are if anything more appropriate for spherical and hyperbolic geometry than for Euclidean geometry. With hindsight, it is even possible to see hyperbolic geometry in properties of complex numbers that were studied as early as 1800, long before hyperbolic geometry was discussed by anyone." (John Stillwell, "Yearning for the Impossible: The Surprising Truths of Mathematics", 2006)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

Douglas T Ross - Collected Quotes

"Automatic design has the computer do too much and the human do too little, whereas automatic programming has the human do too much and...