11 April 2022

On Criteria IV

"Statistical criteria should (1) be sensitive to change in the specific factors tested, (2) be insensitive to changes, of a magnitude likely to occur in practice, in extraneous factors." (George E P Box, 1955)

"In the mathematical theory of the maximum and minimum problems in calculus of variations, different methods are employed. The old classical method consists in finding criteria -as to whether or not for a given curve the corresponding number assumes a maximum or minimum. In order to find such criteria a considered curve is a little varied, and it is from this method that the name 'calculus of variations' for the whole branch of mathematics is derived." (Karl Menger, "What Is Calculus of Variations and What Are Its Applications?" [James R Newman, "The World of Mathematics" Vol. II], 1956)

"Thermostatics, which even now is usually called thermodynamics, has an unfortunate history and a cancerous tradition. It arose in a chaos of metaphysical and indeed irrational controversy, the traces of which drip their poison even today. As compared with the older science of mechanics and the younger science of electromagnetism, its mathematical structure is meager. Though claims for its breadth of application are often extravagant, the examples from which its principles usually are inferred are most special, and extensive mathematical developments based on fundamental equations, such as typify mechanics and electromagnetism, are wanting. The logical standards acceptable in thermostatics fail to meet the criteria of other exact sciences [...]." (Clifford Truesdell, "Six Lectures on Modern Natural Philosophy", 1966)

"Mathematics is good if it enriches the subject, if it opens up new vistas, if it solves old problems, if it fills gaps, fitting snugly and satisfyingly into what is already known, or if it forges new links between previously unconnected parts of the subject It is bad if it is trivial, overelaborate, or lacks any definable mathematical purpose or direction It is pure if its methods are pure - that is, if it doesn't cheat and tackle one problem while pretending to tackle another, and if there are no gaping holes in its logic It is applied if it leads to useful insights outside mathematics. By these criteria, today's mathematics contains as high a proportion of good work as at any other period, and as any other area, and much of it manages to be both pure and applied at the same time." (Ian Stewart, "The Problems of Mathematics", 1987)

"Maxwell's equations […] originally consisted of eight equations. These equations are not 'beautiful'. They do not possess much symmetry. In their original form, they are ugly. […] However, when rewritten using time as the fourth dimension, this rather awkward set of eight equations collapses into a single tensor equation. This is what a physicist calls 'beauty', because both criteria are now satisfied.  (Michio Kaku, "Hyperspace", 1995)

"No one has yet succeeded in deriving the second law from any other law of nature. It stands on its own feet. It is the only law in our everyday world that gives a direction to time, which tells us that the universe is moving toward equilibrium and which gives us a criteria for that state, namely, the point of maximum entropy, of maximum probability. The second law involves no new forces. On the contrary, it says nothing about forces whatsoever." (Brian L Silver, "The Ascent of Science", 1998)

"Elegance and simplicity should remain important criteria in judging mathematics, but the applicability and consequences of a result are also important, and sometimes these criteria conflict. I believe that some fundamental theorems do not admit simple elegant treatments, and the proofs of such theorems may of necessity be long and complicated. Our standards of rigor and beauty must be sufficiently broad and realistic to allow us to accept and appreciate such results and their proofs. As mathematicians we will inevitably use such theorems when it is necessary in the practice our trade; our philosophy and aesthetics should reflect this reality." (Michael Aschbacher, "Highly complex proofs and implications", 2005)

"In mathematics, beauty is a very important ingredient. Beauty exists in mathematics as in architecture and other things. It is a difficult thing to define but it is something you recognise when you see it. It certainly has to have elegance, simplicity, structure and form. All sorts of things make up real beauty. There are many different kinds of beauty and the same is true of mathematical theorems. Beauty is an important criterion in mathematics because basically there is a lot of choice in what you can do in mathematics and science. It determines what you regard as important and what is not." (Michael Atiyah, 2009)

"What is the basis of this interest in beauty? Is it the same in both mathematics and science? Is it rational, in either case, to expect or demand that the products of the discipline satisfy such a criterion? Is there an underlying assumption that the proper business of mathematics and science is to discover what can be discovered about reality and that truth - mathematical and physical - when seen as clearly as possible, must be beautiful? If the demand for beauty stems from some such assumption, is the assumption itself an article of blind faith? If such an assumption is not its basis, what is?" (Raymond S Nickerson, “Mathematical Reasoning:  Patterns, Problems, Conjectures, and Proofs”, 2010)

"It must be emphasized that it is not a question of accepting the correct theory and rejecting the false one. It is a matter of accepting that theory which shows greater formal adaptability for a correct extension. This is a formalistic esthetic criterion, with a highly opportunistic flavor." (John von Neumann)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Data: Longitudinal Data

  "Longitudinal data sets are comprised of repeated observations of an outcome and a set of covariates for each of many subjects. One o...