"The theory of Numbers has always been regarded as one of the most obviously useless branches of Pure Mathematics. The accusation is one against which there is no valid defence; and it is never more just than when directed against the parts of the theory which are more particularly concerned with primes. A science is said to be useful if its development tends to accentuate the existing inequalities in the distribution of wealth, or more directly promotes the destruction of human life. The theory of prime numbers satisfies no such criteria. Those who pursue it will, if they are wise, make no attempt to justify their interest in a subject so trivial and so remote, and will console themselves with the thought that the greatest mathematicians of all ages have found it in it a mysterious attraction impossible to resist." (Godfrey H Hardy, 1915)
"In the mathematical theory of the maximum and minimum problems in calculus of variations, different methods are employed. The old classical method consists in finding criteria -as to whether or not for a given curve the corresponding number assumes a maximum or minimum. In order to find such criteria a considered curve is a little varied, and it is from this method that the name 'calculus of variations' for the whole branch of mathematics is derived." (Karl Menger, "What Is Calculus of Variations and What Are Its Applications?" [James R Newman, "The World of Mathematics" Vol. II], 1956)
"It is easy to obtain confirmations, or verifications, for nearly every theory - if we look for confirmations. Confirmations should count only if they are the result of risky predictions. […] A theory which is not refutable by any conceivable event is non-scientific. Irrefutability is not a virtue of a theory (as people often think) but a vice. Every genuine test of a theory is an attempt to falsify it, or refute it." (Karl R Popper, "Conjectures and Refutations: The Growth of Scientific Knowledge", 1963)
"Any theory starts off with an observer or experimenter. He has in mind a collection of abstract models with predictive capabilities. Using various criteria of relevance, he selects one of them. In order to actually make predictions, this model must be interpreted and identified with a real assembly to form a theory. The interpretation may be prescriptive or predictive, as when the model is used like a blueprint for designing a machine and predicting its states. On the other hand, it may be descriptive and predictive as it is when the model is used to explain and predict the behaviour of a given organism." (Gordon Pask, "The meaning of cybernetics in the behavioural sciences", 1969)
"The advantage of this way of proceeding is evident: insights and skills obtained on the model-side can be - certain transference criteria satisfied - transferred to the original, [in this way] the model-builder obtains a new knowledge about the modeled original […]" (Herbert Stachowiak, "Allgemeine Modelltheorie", 1973)
"It is precisely in investigating the connection that must hold between evaluations of probability and decision-making under conditions of uncertainty that one can arrive at criteria for probabilities, for establishing the conditions which they must satisfy, and for understanding the way in which one can, and indeed one must, 'reason about them'. It turns out, in fact, that there exist simple (and, in the last analysis, obvious) conditions, which we term conditions of coherence: any transgression of these results in decisions whose consequences are manifestly undesirable (leading to certain loss)." (Bruno de Finetti, "Theory of Probability", 1974)
"A Universal Turing Machine is an ideal mathematical object; it represents a formal manipulation of symbols and owes allegiance to criteria of logical consistency but not to physical laws and constraints. Thus, for example, physical variables play no essential role in the concept of algorithm. In reality, however, every logical operation occurs at a minimum cost of KT of energy dissipation (where K is Boltzman's constant and T is temperature) and, in fact, occurs at a much higher cost to insure reliability." (Claudia Carello et al, "The Inadequacies of the Computer Metaphor", 1982)
"It is when unsystematic classification gives place to systematic classification that we can begin to make sense of talking of general criteria of identity not just for things that belong to kinds, but for the kinds themselves." (Peter F Strawson, "Entity and identity: And Other Essays", 1997)
"No one has yet succeeded in deriving the second law from any other law of nature. It stands on its own feet. It is the only law in our everyday world that gives a direction to time, which tells us that the universe is moving toward equilibrium and which gives us a criteria for that state, namely, the point of maximum entropy, of maximum probability. The second law involves no new forces. On the contrary, it says nothing about forces whatsoever." (Brian L Silver, "The Ascent of Science", 1998)
"No plea about inadequacy of our understanding of the decision-making processes can excuse us from estimating decision making criteria. To omit a decision point is to deny its presence - a mistake of far greater magnitude than any errors in our best estimate of the process." (Jay W Forrester, "Perspectives on the modelling process", 2000)
"Sensitive dependence on initial conditions is one of the criteria necessary for showing a solution to a difference equation exhibits chaotic behavior." (Linda J S Allen, "An Introduction to Mathematical Biology", 2007)
No comments:
Post a Comment