24 April 2022

On Beliefs (1980-1989)

"A schema, then is a data structure for representing the generic concepts stored in memory. There are schemata representing our knowledge about all concepts; those underlying objects, situations, events, sequences of events, actions and sequences of actions. A schema contains, as part of its specification, the network of interrelations that is believed to normally hold among the constituents of the concept in question. A schema theory embodies a prototype theory of meaning. That is, inasmuch as a schema underlying a concept stored in memory corresponds to the meaning of that concept, meanings are encoded in terms of the typical or normal situations or events that instantiate that concept." (David E Rumelhart, "Schemata: The building blocks of cognition", 1980)

"Once we have accepted a configuration of schemata, the schemata themselves provide a richness that goes far beyond our observations. […] In fact, once we have determined that a particular schema accounts for some event, we may not be able to determine which aspects of our beliefs are based on direct sensory information and which are merely consequences of our interpretation." (David E Rumelhart, "Schemata: The building blocks of cognition", 1980)

"Some people believe that a theorem is proved when a logically correct proof is given; but some people believe a theorem is proved only when the student sees why it is inevitably true." (Wesley R Hamming, "Coding and Information Theory", 1980)

"Theorems often tell us complex truths about the simple things, but only rarely tell us simple truths about the complex ones. To believe otherwise is wishful thinking or ‘mathematics envy’." (Marvin Minsky, "Music, Mind, and Meaning", 1981)

"Reality is that which when you stop believing in it, it doesn’t go away." (Philip K Dick, "Valis", 1981)

"All advances of scientific understanding, at every level, begin with a speculative adventure, an imaginative preconception of what might be true - a preconception that always, and necessarily, goes a little way (sometimes a long way) beyond anything which we have logical or factual authority to believe in. It is the invention of a possible world, or of a tiny fraction of that world. The conjecture is then exposed to criticism to find out whether or not that imagined world is anything like the real one. Scientific reasoning is therefore at all levels an interaction between two episodes of thought - a dialogue between two voices, the one imaginative and the other critical; a dialogue, as I have put it, between the possible and the actual, between proposal and disposal, conjecture and criticism, between what might be true and what is in fact the case. (Sir Peter B Medawar, "Pluto’s Republic: Incorporating the Art of the Soluble and Induction Intuition in Scientific Thought", 1982)

"The purpose of scientific enquiry is not to compile an inventory of factual information, nor to build up a totalitarian world picture of Natural Laws in which every event that is not compulsory is forbidden. We should think of it rather as a logically articulated structure of justifiable beliefs about nature. It begins as a story about a Possible World - a story which we invent and criticize and modify as we go along, so that it winds by being, as nearly as we can make it, a story about real life." (Sir Peter B Medawar, "Pluto’s Republic: Incorporating the Art of the Soluble and Induction Intuition in Scientific Thought", 1982)

"The scientific method is a potentiation of common sense, exercised with a specially firm determination not to persist in error if any exertion of hand or mind can deliver us from it. Like other exploratory processes, it can be resolved into a dialogue between fact and fancy, the actual and the possible; between what could be true and what is in fact the case. The purpose of scientific enquiry is not to compile an inventory of factual information, nor to build up a totalitarian world picture of Natural Laws in which every event that is not compulsory is forbidden. We should think of it rather as a logically articulated structure of justifiable beliefs about nature. It begins as a story about a Possible World - a story which we invent and criticise and modify as we go along, so that it ends by being, as nearly as we can make it, a story about real life." (Sir Peter B Medawar, "Pluto’s Republic: Incorporating the Art of the Soluble and Induction Intuition in Scientific Thought", 1982)

"The connection between cause and effect takes place in time. This temporary relation may be defined in various ways. Some people believe that cause always precedes effect, that there is a certain interval between the time when the cause begins to act (for example, the interaction of two systems) and the time the effect appears. For a certain time cause and effect coexist, then the cause dies out and the consequence ultimately becomes the cause of something else. And so on to infinity." (Alexander Spirkin, "Dialectical Materialism", 1983)

"The degree of confirmation assigned to any given hypothesis is sensitive to properties of the entire belief system [...] simplicity, plausibility, and conservatism are properties that theories have in virtue of their relation to the whole structure of scientific beliefs taken collectively. A measure of conservatism or simplicity would be a metric over global properties of belief systems." (Jerry Fodor, "Modularity of Mind", 1983)

"Dangers lurk in all systems. Systems incorporate the unexamined beliefs of their creators. Adopt a system, accept its beliefs, and you help strengthen the resistance to change." (Frank Herbert, "God Emperor of Dune", 1984)

"There are those who try to generalize, synthesize, and build models, and there are those who believe nothing and constantly call for more data. The tension between these two groups is a healthy one; science develops mainly because of the model builders, yet they need the second group to keep them honest." (Andrew Miall, "Principles of Sedimentary Basin Analysis", 1984)

"To a considerable degree science consists in originating the maximum amount of information with the minimum expenditure of energy. Beauty is the cleanness of line in such formulations along with symmetry, surprise, and congruence with other prevailing beliefs." (Edward O Wilson, "Biophilia", 1984)

"Modern philosophy of science has gone far beyond the naive belief that science reveals the truth. Even if it could, we would have no means of proving it. Certainty seems unattainable. All scientific statements remain open to doubt. […] We cannot reach the absolute at least as far as science is concerned; we have to content ourselves with the relative." (Rolf Sattler, "Biophilosophy", 1986)

"The assumption of rationality has a favored position in economics. It is accorded all the methodological privileges of a self-evident truth, a reasonable idealization, a tautology, and a null hypothesis. Each of these interpretations either puts the hypothesis of rational action beyond question or places the burden of proof squarely on any alternative analysis of belief and choice. The advantage of the rational model is compounded because no other theory of judgment and decision can ever match it in scope, power, and simplicity." (Amos Tversky & Daniel Kahneman, "Rational Choice and the Framing of Decisions", The Journal of Business Vol. 59 (4), 1986)

"Competent scientists do not believe their own models or theories, but rather treat them as convenient fictions. […] The issue to a scientist is not whether a model is true, but rather whether there is another whose predictive power is enough better to justify movement from today's fiction to a new one." (Steve Vardeman, " Comment", Journal of the American Statistical Association 82, 1987)

"Cybernetics is simultaneously the most important science of the age and the least recognized and understood. It is neither robotics nor freezing dead people. It is not limited to computer applications and it has as much to say about human interactions as it does about machine intelligence. Today’s cybernetics is at the root of major revolutions in biology, artificial intelligence, neural modeling, psychology, education, and mathematics. At last there is a unifying framework that suspends long-held differences between science and art, and between external reality and internal belief." (Paul Pangaro, "New Order From Old: The Rise of Second-Order Cybernetics and Its Implications for Machine Intelligence", 1988)

"A culture may be conceived as a network of beliefs and purposes in which any string in the net pulls and is pulled by the others, thus perpetually changing the configuration of the whole. If the cultural element called morals takes on a new shape, we must ask what other strings have pulled it out of line. It cannot be one solitary string, nor even the strings nearby, for the network is three-dimensional at least." (Jacques Barzun, "The Culture We Deserve", 1989)

"A model is generally more believable if it can predict what will happen, rather than 'explain' something that has already occurred. […] Model building is not so much the safe and cozy codification of what we are confident about as it is a means of orderly speculation." (James R Thompson, "Empirical Model Building", 1989)

"Randomness is a difficult notion for people to accept. When events come in clusters and streaks, people look for explanations and patterns. They refuse to believe that such patterns - which frequently occur in random data - could equally well be derived from tossing a coin. So it is in the stock market as well." (Burton G Malkiel, "A Random Walk Down Wall Street", 1989)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Hypothesis Testing III

  "A little thought reveals a fact widely understood among statisticians: The null hypothesis, taken literally (and that’s the only way...