14 April 2022

On Limit I

"There really must be, in the commencement of contact, in that indivisible instant of time which is an indivisible limit between the continuous time that preceded the contact & that subsequent to it (just in the same way as a point in geometry is an indivisible limit between two segments of a continuous line), a change of velocity taking place suddenly, without any passage through intermediate stages; & this violates the Law of Continuity, which absolutely denies the possibility of a passage from one magnitude to another without passing through intermediate stages." (Roger J Boscovich, "Philosophiae Naturalis Theoria Redacta Ad Unicam Legera Virium in Natura Existentium, 1758)

"The Infinite is often confounded with the Indefinite, but the two conceptions are diametrically opposed. Instead of being a quantity with unassigned yet assignable limits, the Infinite is not a quantity at all, since it neither admits of augmentation nor diminution, having no assignable limits; it is the operation of continuously withdrawing any limits that may have been assigned: the endless addition of new quantities to the old: the flux of continuity. The Infinite is no more a quantity than Zero is a quantity. If Zero is the sign of a vanished quantity, the Infinite is a sign of that continuity of Existence which has been ideally divided into discrete parts in the affixing of limits." (George H. Lewes, "Problems of Life and Mind", 1873)

"To the thought of considering the infinitely great not merely in the form of what grows without limits - and in the closely related form of the convergent infinite series first introduced in the seventeenth century-, but also fixing it mathematically by numbers in the determinate form of the completed-infinite, I have been logically compelled in the course of scientific exertions and attempts which have lasted many years, almost against my will, for it contradicts traditions which had become precious to me; and therefore I believe that no arguments can be made good against it which I would not know how to meet." (Georg Cantor, "Grundlagen einer allgemeinen Mannigfaltigkeitslehre", 1883)

"Between mathematicians and astronomers some misunderstanding exists with respect to the meaning of the term 'convergence'. Mathematicians [...] stipulate that a series is convergent if the sum of the terms tends to a predetermined limit even if the first terms decrease very slowly. Conversely, astronomers are in the habit of saying that a series converges whenever the first twenty terms, for example, decrease rapidly even if the following terms might increase indefinitely. [...] Both rules are legitimate; the first for theoretical research and the second for numerical applications. Both must prevail, but in two entirely separate domains of which the boundaries must be accurately defined. Astronomers do not always know these boundaries accurately but rarely exceed them; the approximation with which they are satisfied usually keeps them far on this side of the boundary. In addition, their instinct guides them and, if they are wrong, a check on the actual observation promptly reveals their error [...]" (Henri Poincaré, "New Methods in Celestial Mechanics" ["Les méthodes nouvelles de la mécanique céleste"], 1892)

"The underlying notion of the integral calculus is also that of finding a limiting value, but this time it is the limiting value of a sum of terms when the number of terms increases without bound at the same time that the numerical value of each term approaches Zero. The area bounded by one or more curves is found as the limiting value of a sum of small rectangles; the length of an arc of a curve is found as the limiting value of a sum of lengths of straight lines (chords of the arc); the volume of a solid bounded by one or more curved surfaces is found as the limiting value of a sum of volumes of small solids bounded by planes; etc." (Mayme I Logsdon, "A Mathematician Explains", 1935)

"Mathematics has, of course, given the solution of the difficulties in terms of the abstract concept of converging infinite series. In a certain metaphysical sense this notion of convergence does not answer Zeno’s argument, in that it does not tell how one is to picture an infinite number of magnitudes as together making up only a finite magnitude; that is, it does not give an intuitively clear and satisfying picture, in terms of sense experience, of the relation subsisting between the infinite series and the limit of this series." (Carl B Boyer, "The History of the Calculus and Its Conceptual Development", 1959)

"Central to the development of the calculus were the concepts of convergence and limit, and with these concepts at hand it became at last possible to resolve the ancient paradoxes of infinity which had so much intrigued Zeno." (Eli Maor, "To Infinity and Beyond: A Cultural History of the Infinite", 1987)

"At the basis of the distance concept lies, for example, the concept of convergent point sequence and their defined limits, and one can, by choosing these ideas as those fundamental to point set theory, eliminate the notions of distance." (Felix Hausdorff)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

Douglas T Ross - Collected Quotes

"Automatic design has the computer do too much and the human do too little, whereas automatic programming has the human do too much and...