14 April 2022

On Series III: Time Series

"Diagrams are sometimes used, not merely to convey several pieces of information such as several time series on one chart, but also to provide visual evidence of relationships between the series." (Alfred R Ilersic, "Statistics", 1959)

"Numerical data, which have been recorded at intervals of time, form what is generally described as a time series. [...] The purpose of analyzing time series is not always the determination of the trend by itself. Interest may be centered on the seasonal movement displayed by the series and, in such a case, the determination of the trend is merely a stage in the process of measuring and analyzing the seasonal variation. If a regular basic or under- lying seasonal movement can be clearly established, forecasting of future movements becomes rather less a matter of guesswork and more a matter of intelligent forecasting." (Alfred R Ilersic, "Statistics", 1959)

"Time series analysis often requires more knowledge of the data and relevant information about their background than it does of statistical techniques. Whereas the data in some other fields may be controlled so as to increase their representativeness, economic data are so changeable in their nature that it is usually impossible to sort out the separate effects of the various influences. Attempts to isolate cyclical, seasonal and irregular, or random movements, are made primarily in the hope that some underlying pattern of change over time may be revealed."  (Alfred R Ilersic, "Statistics", 1959)

"No observations are absolutely trustworthy. In no field of observation can we entirely rule out the possibility that an observation is vitiated by a large measurement or execution error. If a reading is found to lie a very long way from its fellows in a series of replicate observations, there must be a suspicion that the deviation is caused by a blunder or gross error of some kind. [...] One sufficiently erroneous reading can wreck the whole of a statistical analysis, however many observations there are." (Francis J Anscombe, "Rejection of Outliers", Technometrics Vol. 2 (2), 1960)

"A time series is a sequence of observations, usually ordered in time, although in some cases the ordering may be according to another dimension. The feature of time series analysis which distinguishes it from other statistical analysis is the explicit recognition of the importance of the order in which the observations are made. While in many problems the observations are statistically independent, in time series successive observations may be dependent, and the dependence may depend on the positions in the sequence. The nature of a series and the structure of its generating process also may involve in other ways the sequence in which the observations are taken." (Theodore W Anderson, "The Statistical Analysis of Time Series", 1971)

"Entropy theory, on the other hand, is not concerned with the probability of succession in a series of items but with the overall distribution of kinds of items in a given arrangement." (Rudolf Arnheim, "Entropy and Art: An Essay on Disorder and Order", 1974) 

"This transition from uncertainty to near certainty when we observe long series of events, or large systems, is an essential theme in the study of chance." (David Ruelle, "Chance and Chaos", 1991)

"System dynamics models are not derived statistically from time-series data. Instead, they are statements about system structure and the policies that guide decisions. Models contain the assumptions being made about a system. A model is only as good as the expertise which lies behind its formulation. A good computer model is distinguished from a poor one by the degree to which it captures the essence of a system that it represents. Many other kinds of mathematical models are limited because they will not accept the multiple-feedback-loop and nonlinear nature of real systems." (Jay W Forrester, "Counterintuitive Behavior of Social Systems", 1995)

"Like modeling, which involves making a static one-time prediction based on current information, time-series prediction involves looking at current information and predicting what is going to happen. However, with time-series predictions, we typically are looking at what has happened for some period back through time and predicting for some point in the future. The temporal or time element makes time-series prediction both more difficult and more rewarding. Someone who can predict the future based on what has occurred in the past can clearly have tremendous advantages over someone who cannot." (Joseph P Bigus,"Data Mining with Neural Networks: Solving business problems from application development to decision support", 1996)

"Many of the basic functions performed by neural networks are mirrored by human abilities. These include making distinctions between items (classification), dividing similar things into groups (clustering), associating two or more things (associative memory), learning to predict outcomes based on examples (modeling), being able to predict into the future (time-series forecasting), and finally juggling multiple goals and coming up with a good-enough solution (constraint satisfaction)." (Joseph P Bigus,"Data Mining with Neural Networks: Solving business problems from application development to decision support", 1996)

"Averages, ranges, and histograms all obscure the time-order for the data. If the time-order for the data shows some sort of definite pattern, then the obscuring of this pattern by the use of averages, ranges, or histograms can mislead the user. Since all data occur in time, virtually all data will have a time-order. In some cases this time-order is the essential context which must be preserved in the presentation." (Donald J Wheeler," Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"No comparison between two values can be global. A simple comparison between the current figure and some previous value and convey the behavior of any time series. […] While it is simple and easy to compare one number with another number, such comparisons are limited and weak. They are limited because of the amount of data used, and they are weak because both of the numbers are subject to the variation that is inevitably present in weak world data. Since both the current value and the earlier value are subject to this variation, it will always be difficult to determine just how much of the difference between the values is due to variation in the numbers, and how much, if any, of the difference is due to real changes in the process." (Donald J Wheeler, "Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"Prior to the discovery of the butterfly effect it was generally believed that small differences averaged out and were of no real significance. The butterfly effect showed that small things do matter. This has major implications for our notions of predictability, as over time these small differences can lead to quite unpredictable outcomes. For example, first of all, can we be sure that we are aware of all the small things that affect any given system or situation? Second, how do we know how these will affect the long-term outcome of the system or situation under study? The butterfly effect demonstrates the near impossibility of determining with any real degree of accuracy the long term outcomes of a series of events." (Elizabeth McMillan, Complexity, "Management and the Dynamics of Change: Challenges for practice", 2008)

"Regression toward the mean. That is, in any series of random events an extraordinary event is most likely to be followed, due purely to chance, by a more ordinary one." (Leonard Mlodinow, "The Drunkard’s Walk: How Randomness Rules Our Lives", 2008)

"Using random processes in our models allows economists to capture the variability of time series data, but it also poses challenges to model builders. As model builders, we must understand the uncertainty from two different perspectives. Consider first that of the econometrician, standing outside an economic model, who must assess its congruence with reality, inclusive of its random perturbations. An econometrician’s role is to choose among different parameters that together describe a family of possible models to best mimic measured real world time series and to test the implications of these models. I refer to this as outside uncertainty. Second, agents inside our model, be it consumers, entrepreneurs, or policy makers, must also confront uncertainty as they make decisions. I refer to this as inside uncertainty, as it pertains to the decision-makers within the model. What do these agents know? From what information can they learn? With how much confidence do they forecast the future? The modeler’s choice regarding insiders’ perspectives on an uncertain future can have significant consequences for each model’s equilibrium outcomes." (Lars P Hansen, "Uncertainty Outside and Inside Economic Models", [Nobel lecture] 2013)

"With time series though, there is absolutely no substitute for plotting. The pertinent pattern might end up being a sharp spike followed by a gentle taper down. Or, maybe there are weird plateaus. There could be noisy spikes that have to be filtered out. A good way to look at it is this: means and standard deviations are based on the naïve assumption that data follows pretty bell curves, but there is no corresponding 'default' assumption for time series data (at least, not one that works well with any frequency), so you always have to look at the data to get a sense of what’s normal. [...] Along the lines of figuring out what patterns to expect, when you are exploring time series data, it is immensely useful to be able to zoom in and out." (Field Cady, "The Data Science Handbook", 2017)

"[Making reasoned macro calls] starts with having the best and longest-time-series data you can find. You may have to take some risks in terms of the quality of data sources, but it amazes me how people are often more willing to act based on little or no data than to use data that is a challenge to assemble." (Robert J Shiller)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Data: Longitudinal Data

  "Longitudinal data sets are comprised of repeated observations of an outcome and a set of covariates for each of many subjects. One o...