15 April 2022

On Precision (2000-)

"A mathematical model uses mathematical symbols to describe and explain the represented system. Normally used to predict and control, these models provide a high degree of abstraction but also of precision in their application." (Lars Skyttner, "General Systems Theory: Ideas and Applications", 2001)

"Logic is the study of methods and principles of reasoning, where reasoning means obtaining new propositions from existing propositions. In classical logic, propositions are required to be either true or false; that is, the truth value of a proposition is either 0 or 1. Fuzzy logic generalizes classical two-value logic by allowing the truth values of a proposition to be any numbers in [0, 1]. This generalization allows us to perform fuzzy reasoning, also called approximate reasoning; that is, deducing imprecise conclusions (fuzzy propositions) from a collection of imprecise premises (fuzzy propositions). In this section, we first introduce some basic concepts and principles in classical logic and then study their generalizations to fuzzy logic." (Huaguang Zhang & Derong Liu, "Fuzzy Modeling and Fuzzy Control", 2006)

"Statistics can certainly pronounce a fact, but they cannot explain it without an underlying context, or theory. Numbers have an unfortunate tendency to supersede other types of knowing. […] Numbers give the illusion of presenting more truth and precision than they are capable of providing." (Ronald J Baker, "Measure what Matters to Customers: Using Key Predictive Indicators", 2006)

"Human language is a vehicle of truth but also of error, deception, and nonsense. Its use, as in the present discussion, thus requires great prudence. One can improve the precision of language by explicit definition of the terms used. But this approach has its limitations: the definition of one term involves other terms, which should in turn be defined, and so on. Mathematics has found a way out of this infinite regression: it bypasses the use of definitions by postulating some logical relations (called axioms) between otherwise undefined mathematical terms. Using the mathematical terms introduced with the axioms, one can then define new terms and proceed to build mathematical theories. Mathematics need, not, in principle rely on a human language. It can use, instead, a formal presentation in which the validity of a deduction can be checked mechanically and without risk of error or deception." (David Ruelle, "The Mathematician's Brain", 2007)

"Popular accounts of mathematics often stress the discipline’s obsession with certainty, with proof. And mathematicians often tell jokes poking fun at their own insistence on precision. However, the quest for precision is far more than an end in itself. Precision allows one to reason sensibly about objects outside of ordinary experience. It is a tool for exploring possibility: about what might be, as well as what is." (Donal O’Shea, “The Poincaré Conjecture”, 2007)

"It is obviously pointless to report or quote results to more digits than is warranted. In fact, it is misleading or at the very least unhelpful, because it fails to communicate to the reader another important aspect of the result - namely its reliability! A good rule (sometimes known as Ehrenberg’s rule) is to quote all digits up to and including the first two variable digits." (Philipp K Janert, "Data Analysis with Open Source Tools", 2010)

"Precision and recall are ways of monitoring the power of the machine learning implementation. Precision is a metric that monitors the percentage of true positives. […] Recall is the ratio of true positives to true positive plus false negatives." (Matthew Kirk, "Thoughtful Machine Learning", 2015)

"GIGO is a famous saying coined by early computer scientists: garbage in, garbage out. At the time, people would blindly put their trust into anything a computer output indicated because the output had the illusion of precision and certainty. If a statistic is composed of a series of poorly defined measures, guesses, misunderstandings, oversimplifications, mismeasurements, or flawed estimates, the resulting conclusion will be flawed." (Daniel J Levitin, "Weaponized Lies", 2017)

"Repeated observations of the same phenomenon do not always produce the same results, due to random noise or error. Sampling errors result when our observations capture unrepresentative circumstances, like measuring rush hour traffic on weekends as well as during the work week. Measurement errors reflect the limits of precision inherent in any sensing device. The notion of signal to noise ratio captures the degree to which a series of observations reflects a quantity of interest as opposed to data variance. As data scientists, we care about changes in the signal instead of the noise, and such variance often makes this problem surprisingly difficult." (Steven S Skiena, "The Data Science Design Manual", 2017)

"Artificial intelligence is defined as the branch of science and technology that is concerned with the study of software and hardware to provide machines the ability to learn insights from data and the environment, and the ability to adapt in changing situations with high precision, accuracy and speed." (Amit Ray, "Compassionate Artificial Intelligence", 2018)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Data: Longitudinal Data

  "Longitudinal data sets are comprised of repeated observations of an outcome and a set of covariates for each of many subjects. One o...