23 April 2022

On Consistence (1990-1999)

"The term chaos is used in a specific sense where it is an inherently random pattern of behaviour generated by fixed inputs into deterministic (that is fixed) rules (relationships). The rules take the form of non-linear feedback loops. Although the specific path followed by the behaviour so generated is random and hence unpredictable in the long-term, it always has an underlying pattern to it, a 'hidden' pattern, a global pattern or rhythm. That pattern is self-similarity, that is a constant degree of variation, consistent variability, regular irregularity, or more precisely, a constant fractal dimension. Chaos is therefore order (a pattern) within disorder (random behaviour)." (Ralph D Stacey, "The Chaos Frontier: Creative Strategic Control for Business", 1991)

"The word theory, as used in the natural sciences, doesn’t mean an idea tentatively held for purposes of argument - that we call a hypothesis. Rather, a theory is a set of logically consistent abstract principles that explain a body of concrete facts. It is the logical connections among the principles and the facts that characterize a theory as truth. No one element of a theory [...] can be changed without creating a logical contradiction that invalidates the entire system. Thus, although it may not be possible to substantiate directly a particular principle in the theory, the principle is validated by the consistency of the entire logical structure." (Alan Cromer, "Uncommon Sense: The Heretical Nature of Science", 1993)

"There is one qualitative aspect of reality that sticks out from all others in both profundity and mystery. It is the consistent success of mathematics as a description of the workings of reality and the ability of the human mind to discover and invent mathematical truths." (John D Barrow, "Theories of Everything: The quest for ultimate explanation. New", 1991)

"When looking at the end result of any statistical analysis, one must be very cautious not to over interpret the data. Care must be taken to know the size of the sample, and to be certain the method for gathering information is consistent with other samples gathered. […] No one should ever base conclusions without knowing the size of the sample and how random a sample it was. But all too often such data is not mentioned when the statistics are given - perhaps it is overlooked or even intentionally omitted." (Theoni Pappas, "More Joy of Mathematics: Exploring mathematical insights & concepts", 1994)

"Among the various paradigmatic changes in science and mathematics in this century, one such change concerns the concept of uncertainty. In science, this change has been manifested by a gradual transition from the traditional view, which insists that uncertainty is undesirable in science and should be avoided by all possible means, to an alternative view, which is tolerant of uncertainty and insists that science cannot avoid it. According to the traditional view, science should strive for certainty in all its manifestations (precision, specificity, sharpness, consistency, etc.); hence, uncertainty (imprecision, nonspecificity, vagueness, inconsistency, etc.) is regarded as unscientific. According to the alternative (or modem) view, uncertainty is considered essential to science; it is not only an unavoidable plague, but it has, in fact, a great utility." (George Klir, "Fuzzy sets and fuzzy logic", 1995)

"Arm chair reflections on the concept of causation [are] not going to yield new insights. The grandfather paradox is simply a way of pointing to the fact that if the usual laws of physics are supposed to hold true in a chronology violating spacetime, then consistency constraints emerge. [To understand these constraints] involves solving problems in physics, not armchair philosophical reflections." (John Earman,"Recent Work on Time Travel", 1995)

"Inconsistency is an inevitable trait of any self-sustaining system built up out of consistent parts." (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)

"It suggests to me that consciousness and our ability to do mathematics are no mere accident, no trivial detail, no insignificant by-product of evolution that is piggy-backing on some other mundane property. It points to what I like to call the cosmic connection, the existence of a really deep relationship between minds that can do mathematics and the underlying laws of nature that produce them. We have a closed system of consistency here: the laws of physics produce complex systems, and these complex systems lead to consciousness, which then produces mathematics, which can encode [...] the very laws of physics that gave rise to it." (Paul Davies, "Are We Alone?: Philosophical Implications of the Discovery of Extraterrestrial Life", 1995)

"In sharp contrast (with the traditional social planning) the systems design approach seeks to understand a problem situation as a system of interconnected, interdependent, and interacting issues and to create a design as a system of interconnected, interdependent, interacting, and internally consistent solution ideas." (Béla H Bánáthy, "Designing Social Systems in a Changing World", 1996)

"I have no idea whether the properties of the universe as we know it are fundamental or emergent, but I believe that the mere possibility of the latter should give the string theorists pause, for it would imply that more than one set of microscopic equations is consistent with experiment - so that we are blind to these equations until better experiments are designed - and also that the true nature of the microscopic equations is irrelevant to our world." (Robert B Laughlin, "Fractional quantization", Reviews of Modern Physics vol. 71 (4), [Nobel lecture] 1999)

"Simple observation generally gets us nowhere. It is the creative imagination that increases our understanding by finding connections between apparently unrelated phenomena, and forming logical, consistent theories to explain them. And if a theory turns out to be wrong, as many do, all is not lost. The struggle to create an imaginative, correct picture of reality frequently tells us where to go next, even when science has temporarily followed the wrong path." (Richard Morris,"The Universe, the Eleventh Dimension, and Everything: What We Know and How We Know It", 1999)

"The random-walk theory does not, as some critics have proclaimed, state that stock prices move aimlessly and erratically and are insensitive to changes in fundamental information. On the contrary, the point of the random-walk theory is just the opposite: The market is so efficient - prices move so quickly when new information does arise, that no one can consistently buy or sell quickly enough to benefit." (Burton G Malkiel, "A Random Walk Down Wall Street", 1999)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

Alexander von Humboldt - Collected Quotes

"Whatever relates to extent and quantity may be represented by geometrical figures. Statistical projections which speak to the senses w...