24 April 2022

On Belief (1950-1959)

"A computer would deserve to be called intelligent if it could deceive a human into believing that it was human." (Alan Turing, "Computing Machinery and Intelligence", Mind Vol. 59, 1950)

"[…] the chief reason in favor of any theory on the principles of mathematics must always be inductive, i.e., it must lie in the fact that the theory in question enables us to deduce ordinary mathematics. In mathematics, the greatest degree of self-evidence is usually not to be found quite at the beginning, but at some later point; hence the early deductions, until they reach this point, give reasons rather from them, than for believing the premises because true consequences follow from them, than for believing the consequences because they follow from the premises." (Alfred N Whitehead, "Principia Mathematica", 1950)

"As a set of cognitive beliefs, religion is a speculative hypothesis of an extremely low order of probability." (Sidney Hook, The Partisan Review, 1950)

"It is a common fallacy to believe that the law of large numbers acts as a force endowed with memory seeking to return to the original state, and many wrong conclusions have been drawn from this assumption." (William Feller, "An Introduction To Probability Theory And Its Applications", 1950)

"[…] no one believes an hypothesis except its originator but everyone believes an experiment except the experimenter. (William I B Beveridge, "The Art of Scientific Investigation", 1950)

"The hypothesis is the principal intellectual instrument in research. Its function is to indicate new experiments and observations and it therefore sometimes leads to discoveries even when not correct itself. We must resist the temptation to become too attached to our hypothesis, and strive to judge it objectively and modify it or discard it as soon as contrary evidence is brought to light. Vigilance is needed to prevent our observations and interpretations being biased in favor of the hypothesis. Suppositions can be used without being believed." (William I B Beveridge, "The Art of Scientific Investigation", 1950)

"The belief in science has replaced in large measure, the belief in God. Even where religion was regarded as compatible with science, it was modified by the mentality of the believer in scientific truth." (Hans Reichenbach, "The Rise of Scientific Philosophy", 1951)

"The older physicist believed in Nature and thought of himself as making experiments to see what She was like. She was there whether he could observe her or not. But the modern physicist thinks first of all of what he observes in his experiments and is not interested in anything that he cannot possibly observe. He looks for relations between his observations and ignores everything else. But he still expresses his results as though they were discoveries of the essence of Nature, because he is so used to this way of speaking that he does not realise that his discoveries no longer conform to it. When they are expressed as the characteristics of a world existing outside us and independently of us, which causes our experience by its impact on our sense organs, these discoveries require such a world to have contradictory properties. Hence, by retaining this form of expression, the physicist finds himself presenting his perfectly rational achievements as though they were nonsensical. (Herbert Dingle, "The Scientific Adventure", British Journal for the Philosophy of Science, 1952)

"The trouble seems to lie chiefly in the assumption that mathematics is by nature something absolute, unchanging with time and place, and therefore capable of being identified once the genius with the eye sharp enough to perceive and characterize it appears on the human scene. And, since mathematics is nothing of the sort (although the layman will probably go on for centuries hence believing that it is), only failure can ensue from the attempt so to characterize it." (Raymond L Wilder, "Introduction to the Foundations of Mathematics", 1952)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Data: Longitudinal Data

  "Longitudinal data sets are comprised of repeated observations of an outcome and a set of covariates for each of many subjects. One o...