09 April 2022

Geometrical Figures VII: Surfaces

"In order to know the curvature of a curve, the determination of the radius of the osculating circle furnishes us the best measure, where for each point of the curve we find a circle whose curvature is precisely the same. However, when one looks for the curvature of a surface, the question is very equivocal and not at all susceptible to an absolute response, as in the case above. There are only spherical surfaces where one would be able to measure the curvature, assuming the curvature of the sphere is the curvature of its great circles, and whose radius could be considered the appropriate measure. But for other surfaces one doesn’t know even how to compare a surface with a sphere, as when one can always compare the curvature of a curve with that of a circle. The reason is evident, since at each point of a surface there are an infinite number of different curvatures. One has to only consider a cylinder, where along the directions parallel to the axis, there is no curvature, whereas in the directions perpendicular to the axis, which are circles, the curvatures are all the same, and all other oblique sections to the axis give a particular curvature. It’s the same for all other surfaces, where it can happen that in one direction the curvature is convex, and in another it is concave, as in those resembling a saddle." (Leonhard Euler, "Recherches sur la courbure des surfaces", 1767)

"I take the word 'mapping' in the widest possible sense; any point of the spherical surface is represented on the plane by any desired rule, so that every point of the sphere corresponds to a specified point in the plane, and inversely." (Leonhard Euler, "On the representation of Spherical Surfaces onto the Plane", 1777)

"The analytical equations, unknown to the ancient geometers, which Descartes was the first to introduce into the study of curves and surfaces, are not restricted to the properties of figures, and to those properties which are the object of rational mechanics; they extend to all general phenomena. There cannot be a language more universal and more simple, more free from errors and from obscurities, that is to say more worthy to express the invariable relations of natural things." (Jean-Baptiste-Joseph Fourier, "The Analytical Theory of Heat", 1822)

"The integrals which we have obtained are not only general expressions which satisfy the differential equation, they represent in the most distinct manner the natural effect which is the object of the phenomenon [...] when this condition is fulfilled, the integral is, properly speaking, the equation of the phenomenon; it expresses clearly the character and progress of it, in the same manner as the finite equation of a line or curved surface makes known all the properties of those forms." (Jean-Baptiste-Joseph Fourier, "Théorie Analytique de la Chaleur", 1822)

"In the extension of space-construction to the infinitely great, we must distinguish between unboundedness and infinite extent; the former belongs to the extent relations, the latter to the measure-relations. That space is an unbounded threefold manifoldness, is an assumption which is developed by every conception of the outer world; according to which every instant the region of real perception is completed and the possible positions of a sought object are constructed, and which by these applications is forever confirming itself. The unboundedness of space possesses in this way a greater empirical certainty than any external experience. But its infinite extent by no means follows from this; on the other hand if we assume independence of bodies from position, and therefore ascribe to space constant curvature, it must necessarily be finite provided this curvature has ever so small a positive value. If we prolong all the geodesies starting in a given surface-element, we should obtain an unbounded surface of constant curvature, i.e., a surface which in a flat manifoldness of three dimensions would take the form of a sphere, and consequently be finite." (Bernhard Riemann, "On the hypotheses which lie at the foundation of geometry", 1854)

"When we consider complex numbers and their geometrical representation, we leave the field of the original concept of quantity, as contained especially in the quantities of Euclidean geometry: its lines, surfaces and volumes. According to the old conception, length appears as something material which fills the straight line between its end points and at the same time prevents another thing from penetrating into its space by its rigidity. In adding quantities, we are therefore forced to place one quantity against another. Something similar holds for surfaces and solid contents. The introduction of negative quantities made a dent in this conception, and imaginary quantities made it completely impossible. Now all that matters is the point of origin and the end point; whether there is a continuous line between them, and if so which, appears to make no difference whatsoever; the idea of filling space has been completely lost. All that has remained is certain general properties of addition, which now emerge as the essential characteristic marks of quantity. The concept has thus gradually freed itself from intuition and made itself independent. This is quite unobjectionable, especially since its earlier intuitive character was at bottom mere appearance. Bounded straight lines and planes enclosed by curves can certainly be intuited, but what is quantitative about them, what is common to lengths and surfaces, escapes our intuition." (Gottlob Frege, "Methods of Calculation based on an Extension of the Concept of Quantity", 1874)

"Instead of the points of a line, plane, space, or any manifold under investigation, we may use instead any figure contained within the manifold: a group of points, curve, surface, etc. As there is nothing at all determined at the outset about the number of arbitrary parameters upon which these figures should depend, the number of dimensions of the line, plane, space, etc. is likewise arbitrary and depends only on the choice of space element. But so long as we base our geometrical investigation on the same group of transformations, the geometrical content remains unchanged. That is, every theorem resulting from one choice of space element will also be a theorem under any other choice; only the arrangement and correlation of the theorems will be changed. The essential thing is thus the group of transformations; the number of dimensions to be assigned to a manifold is only of secondary importance." (Felix Klein, "A comparative review of recent researches in geometry", Bulletin of the American Mathematoical Society 2(10), 1893)

"Imagine the forehead of a bull, with the protuberances from which the horns and ears start, and with the collars hollowed out between these protuberances; but elongate these horns and ears without limit so that they extend to infinity; then you will have one of the surfaces we wish to study. On such a surface geodesics may show many different aspects. There are, first of all, geodesics which close on themselves. There are some also which are never infinitely distant from their starting point even though they never exactly pass through it again; some turn continually around the right horn, others around the left horn, or right ear, or left ear; others, more complicated, alternate, in accordance with certain rules, the turns they describe around one horn with the turns they describe around the other horn, or around one of the ears. Finally, on the forehead of our bull with his unlimited horns and ears there will be geodesics going to infinity, some mounting the right horn, others mounting the left horn, and still others following the right or left ear. [...] If, therefore, a material point is thrown on the surface studied starting from a geometrically given position with a geometrically given velocity, mathematical deduction can determine the trajectory of this point and tell whether this path goes to infinity or not. But, for the physicist, this deduction is forever useless. When, indeed, the data are no longer known geometrically, but are determined by physical procedures as precise as we may suppose, the question put remains and will always remain unanswered." (Pierre-Maurice-Marie Duhem, "La théorie physique. Son objet, sa structure", 1906)

"But it is a third geometry from which quantity is completely excluded and which is purely qualitative; this is analysis situs. In this discipline, two figures are equivalent whenever one can pass from one to the other by a continuous deformation; whatever else the law of this deformation may be, it must be continuous. Thus, a circle is equivalent to an ellipse or even to an arbitrary closed curve, but it is not equivalent to a straight-line segment since this segment is not closed. A sphere is equivalent to any convex surface; it is not equivalent to a torus since there is a hole in a torus and in a sphere there is not. Imagine an arbitrary design and a copy of this same design executed by an unskilled draftsman; the properties are altered, the straight lines drawn by an inexperienced hand have suffered unfortunate deviations and contain awkward bends. From the point of view of metric geometry, and even of projective geometry, the two figures are not equivalent; on the contrary, from the point of view of analysis situs, they are." (Henri Poincaré, "Dernières pensées", 1913)

"Two Riemann surfaces which can be mapped conformally onto each other are (conformally) equivalent and are to be regarded as different representations of one and the same ideal Riemann surface. The intrinsic properties of a Riemann surface will include only those properties which are invariant under conformal maps; that is, those properties which, if possessed by one Riemann surface are possessed by every equivalent surface. Obviously all topological properties are intrinsic properties of a Riemann surface; similarly with those properties belonging to the surface by virtue of its smoothness." (Hermann Weyl, "The Concept of a Riemann Surface", 1913)

"We frequently find that nature acts in such a way as to minimize certain magnitudes. The soap film will take the shape of a surface of smallest area. Light always follows the shortest path, that is, the straight line, and, even when reflected or broken, follows a path which takes a minimum of time. In mechanical systems we find that the movements actually take place in a form which requires less effort in a certain sense than any other possible movement would use. There was a period, about 150 years ago, when physicists believed that the whole of physics might be deduced from certain minimizing principles, subject to calculus of variations, and these principles were interpreted as tendencies--so to say, economical tendencies of nature. Nature seems to follow the tendency of economizing certain magnitudes, of obtaining maximum effects with given means, or to spend minimal means for given effects." (Karl Menger, "What Is Calculus of Variations and What Are Its Applications?" [James R Newman, "The World of Mathematics" Vol. II], 1956)

"While the minimum and maximum problems of calculus of variations correspond to the problem in the ordinary calculus of finding peaks and pits of a surface, the minimax problems correspond to the problem of finding the saddle points of the surface (the passes of a mountain)."(Karl Menger, "What Is Calculus of Variations and What Are Its Applications?" [James R Newman, "The World of Mathematics" Vol. II], 1956)

"The mathematical models for many physical systems have manifolds as the basic objects of study, upon which further structure may be defined to obtain whatever system is in question. The concept generalizes and includes the special cases of the cartesian line, plane, space, and the surfaces which are studied in advanced calculus. The theory of these spaces which generalizes to manifolds includes the ideas of differentiable functions, smooth curves, tangent vectors, and vector fields. However, the notions of distance between points and straight lines (or shortest paths) are not part of the idea of a manifold but arise as consequences of additional structure, which may or may not be assumed and in any case is not unique." (Richard L Bishop & Samuel I Goldberg, "Tensor Analysis on Manifolds", 1968)

"Pure mathematics are concerned only with abstract propositions, and have nothing to do with the realities of nature. There is no such thing in actual existence as a mathematical point, line or surface. There is no such thing as a circle or square. But that is of no consequence. We can define them in words, and reason about them. We can draw a diagram, and suppose that line to be straight which is not really straight, and that figure to be a circle which is not strictly a circle. It is conceived therefore by the generality of observers, that mathematics is the science of certainty." (William Godwin, "Thoughts on Man", 1969)

"Maximum and minimum always exist together: if our cup-like surface is turned over, we get a cap, in which the highest point (maximum) corresponds to the lowest point of the cup (minimum). By climbing to the uppermost peak of a mountain we can find ourselves (via reflection in a nearby lake) in the lowest point of the valley below. Here, the mathematician calmly reasons to within an accuracy that amounts to the opposite, so to say, for if we find a maximum and then view the situation from another angle, we see a minimum. The answer thus depends solely on how we view the surface. That is why we always speak of seeking an extremum and not, separately, a maximum or a minimum." (Yakov Khurgin, "Did You Say Mathematics?", 1974)

"[...] if the behavior points for the entire control surface are plotted and then connected, they form a smooth surface: the behavior surface. The surface has an overall slope from high values where rage predominates to low values in the region where fear is the prevailing state of mind, but the slope is not its most distinctive feature. Catastrophe theory reveals that in the middle of the surface there must be a smooth double fold, creating a pleat without creases, which grows narrower from the front of the surface to the back and eventually disappears in a singular point where the three sheets of the pleat come together. It is the pleat that gives the model its most interesting characteristics. All the points on the behavior surface represent the most probable behavior [...], with the exception of those on the middle sheet, which represent least probable behavior. Through catastrophe theory we can deduce the shape of the entire surface from the fact that the behavior is bimodal for some control points." (E Cristopher Zeeman, "Catastrophe Theory", Scientific American, 1976)

"Because of its foundation in topology, catastrophe theory is qualitative, not quantitative. Just as geometry treated the properties of a triangle without regard to its size, so topology deals with properties that have no magnitude, for example, the property of a given point being inside or outside a closed curve or surface. This property is what topologists call 'invariant' -it does not change even when the curve is distorted. A topologist may work with seven-dimensional space, but he does not and cannot measure (in the ordinary sense) along any of those dimensions. The ability to classify and manipulate all types of form is achieved only by giving up concepts such as size, distance, and rate. So while catastrophe theory is well suited to describe and even to predict the shape of processes, its descriptions and predictions are not quantitative like those of theories built upon calculus. Instead, they are rather like maps without a scale: they tell us that there are mountains to the left, a river to the right, and a cliff somewhere ahead, but not how far away each is, or how large." (Alexander Woodcock & Monte Davis, "Catastrophe Theory", 1978)

"The space of our universe is the hypersurface of a vast expanding hypersphere." (Rudy Rucker, "The Sex Sphere", 1983)

"Linking topology and dynamical systems is the possibility of using a shape to help visualize the whole range of behaviors of a system. For a simple system, the shape might be some kind of curved surface; for a complicated system, a manifold of many dimensions. A single point on such a surface represents the state of a system at an instant frozen in time. As a system progresses through time, the point moves, tracing an orbit across this surface. Bending the shape a little corresponds to changing the system's parameters, making a fluid more visous or driving a pendulum a little harder. Shapes that look roughly the same give roughly the same kinds of behavior. If you can visualize the shape, you can understand the system." (James Gleick, "Chaos: Making a New Science", 1987)

"First, strange attractors look strange: they are not smooth curves or surfaces but have 'non-integer dimension' - or, as Benoit Mandelbrot puts it, they are fractal objects. Next, and more importantly, the motion on a strange attractor has sensitive dependence on initial condition. Finally, while strange attractors have only finite dimension, the time-frequency analysis reveals a continuum of frequencies." (David Ruelle, "Chance and Chaos", 1991)

"Three laws governing black hole changes were thus found, but it was soon noticed that something unusual was going on. If one merely replaced the words 'surface area' by 'entropy' and 'gravitational field' by 'temperature', then the laws of black hole changes became merely statements of the laws of thermodynamics. The rule that the horizon surface areas can never decrease in physical processes becomes the second law of thermodynamics that the entropy can never decrease; the constancy of the gravitational field around the horizon is the so-called zeroth law of thermodynamics that the temperature must be the same everywhere in a state of thermal equilibrium. The rule linking allowed changes in the defining quantities of the black hole just becomes the first law of thermodynamics, which is more commonly known as the conservation of energy." (John D Barrow, "Theories of Everything: The Quest for Ultimate Explanation", 1991)

"An attractor that consists of an infinite number of curves, surfaces, or higher-dimensional manifolds - generalizations of surfaces to multidimensional space - often occurring in parallel sets, with a gap between any two members of the set, is called a strange attractor." (Edward N Lorenz, "The Essence of Chaos", 1993)

"Topology deals with those properties of curves, surfaces, and more general aggregates of points that are not changed by continuous stretching, squeezing, or bending. To a topologist, a circle and a square are the same, because either one can easily be bent into the shape of the other. In three dimensions, a circle and a closed curve with an overhand knot in it are topologically different, because no amount of bending, squeezing, or stretching will remove the knot." (Edward N Lorenz, "The Essence of Chaos", 1993)

"Geometrical intuition plays an essential role in contemporary algebro-topological and geometric studies. Many profound scientific mathematical papers devoted to multi-dimensional geometry use intensively the 'visual slang' such as, say, 'cut the surface', 'glue together the strips', 'glue the cylinder', 'evert the sphere' , etc., typical of the studies of two and three-dimensional images. Such a terminology is not a caprice of mathematicians, but rather a 'practical necessity' since its employment and the mathematical thinking in these terms appear to be quite necessary for the proof of technically very sophisticated results."(Anatolij Fomenko, "Visual Geometry and Topology", 1994)

"Roughly speaking, manifolds are geometrical objects obtained by glueing open discs (balls) like a papier-mache is glued of small paper scraps. To this end, one first prepares a clay or plastecine figure which is then covered with several sheets of paper scraps glued onto one another. After the plasticine is removed, there remains a two-dimensional surface." (Anatolij Fomenko, "Visual Geometry and Topology", 1994)

"As with subtle bifurcations, catastrophes also involve a control parameter. When the value of that parameter is below a bifurcation point, the system is dominated by one attractor. When the value of that parameter is above the bifurcation point, another attractor dominates. Thus the fundamental characteristic of a catastrophe is the sudden disappearance of one attractor and its basin, combined with the dominant emergence of another attractor. Any type of attractor static, periodic, or chaotic can be involved in this. Elementary catastrophe theory involves static attractors, such as points. Because multidimensional surfaces can also attract (together with attracting points on these surfaces), we refer to them more generally as attracting hypersurfaces, limit sets, or simply attractors." (Courtney Brown, "Chaos and Catastrophe Theories", 1995)

"Since geometry is the mathematical idealization of space, a natural way to organize its study is by dimension. First we have points, objects of dimension O. Then come lines and curves, which are one-dimensional objects, followed by two-dimensional surfaces, and so on. A collection of such objects from a given dimension forms what mathematicians call a 'space'. And if there is some notion enabling us to say when two objects are 'nearby' in such a space, then it's called a topological space." (John L Casti, "Five Golden Rules", 1995)

"Since geometry is the mathematical idealization of space, a natural way to organize its study is by dimension. First we have points, objects of dimension O. Then come lines and curves, which are one-dimensional objects, followed by two-dimensional surfaces, and so on. A collection of such objects from a given dimension forms what mathematicians call a 'space'. And if there is some notion enabling us to say when two objects are 'nearby' in such a space, then it's called a topological space." (John L Casti, "Five Golden Rules", 1995)

"What's important about a saddle point is that it represents a decision by the two players that neither can improve upon by unilaterally departing from it. In short, either player can announce such a choice in advance to the other player and suffer no penalty by doing so. Consequently, the best choice for each player is at the saddle point, which is called a 'solution' to the game in pure strategies. This is because regardless of the number of times the game is played, the optimal choice for each player is to always take his or her saddle-point decision. […] the saddle point is at the same time the highest point on the payoff surface in one direction and the lowest in the other direction. Put in algebraic terms using the payoff matrix, the saddle point is where the largest of the row minima coincides with the smallest of the column maxima." (John L Casti, "Five Golden Rules", 1995)

"Differentiability of a function can be established by examining the behavior of the function in the immediate neighborhood of a single point a in its domain. Thus, all we need is coordinates in the vicinity of the point a. From this point of view, one might say that local coordinates have more essential qualities. However, if are not looking at individual surfaces, we cannot find a more general and universal notion than smoothness." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"It is commonly said that the study of manifolds is, in general, the study of the generalization of the concept of surfaces. To some extent, this is true. However, defining it that way can lead to overshadowing by 'figures' such as geometrical surfaces." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"The best example to indicate the rigidity of analytic functions is a soap film (with little viscosity) on a wire frame (think of a bubble blower). The soap film, which is created by the surface tension, stretches across the wire frame and is known to have analyticity. Therefore, if we try to change a certain region of the film by tapping it with a stick, then the film loses analyticity and will immediately brake." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"Particular landforms or surface morphologies may be generated, in some cases, by several different processes, sets of environmental controls, or developmental histories. This convergence to similar forms despite variations in processes and controls is called equifinality." (Jonathan Phillips, "Simplexity and the Reinvention of Equifinality", Geographical Analysis Vol. 29 (1), 1997)

"Algebraic topology studies properties of a narrower class of spaces, - basically the classical objects of mathematics: spaces given by systems of algebraic and functional equations, surfaces lying in Euclidean space, and other sets which in mathematics are called manifolds. Examining the narrower class of spaces permits deeper penetration into their structure." (Michael I Monastyrsky, "Riemann, Topology, and Physics", 1999)

"Replacing particles by strings is a naive-sounding step, from which many other things follow. In fact, replacing Feynman graphs by Riemann surfaces has numerous consequences: 1. It eliminates the infinities from the theory. [...] 2. It greatly reduces the number of possible theories. [...] 3. It gives the first hint that string theory will change our notions of spacetime." (Edward Witten, "The Past and Future of String Theory", 2003)

"Wherever we look in our world the complex systems of nature and time seem to preserve the look of details at finer and finer scales. Fractals show a holistic hidden order behind things, a harmony in which everything affects everything else, and, above all, an endless variety of interwoven patterns. Fractal geometry allows bounded curves of infinite length, as well as closed surfaces with infinite area. It even allows curves with positive volume and arbitrarily large groups of shapes with exactly the same boundary." (Philip Tetlow, "The Web’s Awake: An Introduction to the Field of Web Science and the Concept of Web Life", 2007)

"For unqualified adequacy of the theory, what is required is that the surface models of phenomena fit properly with or into the theoretical models. The surface models will provide probability functions for events that are classified as outcomes in situations classified as measurements of given observables."  (Bas C van Fraassen, "Scientific Representation: Paradoxes of Perspective", 2008)

"Scientific theories represent how things are, doing so mainly by presenting a range of models as candidate representations of the phenomena. [...] A theory provides, in essence, a set of models. The 'in essence' signals much that must be delicately expanded and qualified; [...] These models - the theoretical models - are provided in the first instance to fit observed and observable phenomena. Since the description of these phenomena is in practice already by means of models - the ‘data models’ or ‘surface models’, we can put the requirement as follows: the data or surface models must ideally be isomorphically embeddable in theoretical models."  (Bas C van Fraassen, "Scientific Representation: Paradoxes of Perspective", 2008)

"The observable phenomenon makes its appearance to us first of all in the outcome of a specific measurement, or large set of such measurements - or at slight remove, in a data model constructed from these individual outcomes, or at a slightly further remove yet, in the surface model constructed by extrapolating the patterns in the data model to something finer than our instruments can register."  (Bas C van Fraassen, "Scientific Representation: Paradoxes of Perspective", 2008)

"Geometric pattern repeated at progressively smaller scales, where each iteration is about a reproduction of the image to produce completely irregular shapes and surfaces that can not be represented by classical geometry. Fractals are generally self-similar (each section looks at all) and are not subordinated to a specific scale. They are used especially in the digital modeling of irregular patterns and structures in nature." (Mauro Chiarella, "Folds and Refolds: Space Generation, Shapes, and Complex Components", 2016)

"The true traditional doughnut has the topology of a sphere. It is a matter of taste whether one regards this as having separate internal and external surfaces. The important point is that the inner space should be filled with good raspberry jam. This is also a matter of taste." (Peter B Fellgett)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Data: Longitudinal Data

  "Longitudinal data sets are comprised of repeated observations of an outcome and a set of covariates for each of many subjects. One o...