03 April 2022

On Numbers: Transcedentals

"Since one could directly derive the expansion in series of algebraic functions according to the powers of an increment, the derivatives, and the integral, one not only held that it was possible to assume the existence of such a series, derivative, and integral for all functions in general, but one never even had the idea that herein lay an assertion, whether it now be an axiom or a theorem - so self-evident did the transfer of the properties of algebraic functions to transcendental ones seem in the light of the geometrical view of curves representing functions. And examples in which purely analytic functions displayed singularities that were clearly different from those of algebraic functions remained entirely unnoticed." (Hermann Hankel, 1870)

"As Gauss first pointed out, the problem of cyclotomy, or division of the circle into a number of equal parts, depends in a very remarkable way upon arithmetical considerations. We have here the earliest and simplest example of those relations of the theory of numbers to transcendental analysis, and even to pure geometry, which so often unexpectedly present themselves, and which, at first sight, are so mysterious." (George B Mathews, "Theory of Numbers", 1892)

"The proof that π is a transcendental number will forever mark an epoch in mathematical science. It gives the final answer to the problem of squaring the circle and settles this vexed question once for all. This problem requires to derive the number π by a finite number of elementary geometrical processes, i.e. with the use of the ruler and compasses alone. As a straight line and a circle, or two circles, have only two intersections, these processes, or any finite combination of them, can be expressed algebraically in a comparatively simple form, so that a solution of the problem of squaring the circle would mean that π can be expressed as the root of an algebraic equation of a comparatively simple kind, viz. one that is solvable by square roots." (Felix Klein, "Lectures on Mathematics", 1911)

"The number was first studied in respect of its rationality or irrationality, and it was shown to be really irrational. When the discovery was made of the fundamental distinction between algebraic and transcendental numbers, i. e. between those numbers which can be, and those numbers which cannot be, roots of an algebraical equation with rational coefficients, the question arose to which of these categories the number π belongs. It was finally established by a method which involved the use of some of the most modern of analytical investigation that the number π was transcendental. When this result was combined with the results of a critical investigation of the possibilities of a Euclidean determination, the inferences could be made that the number π, being transcendental, does not admit of a construction either by a Euclidean determination, or even by a determination in which the use of other algebraic curves besides the straight line and the circle are permitted." (Ernest W Hobson, "Squaring the Circle", 1913) 

"The simple algebraic numbers, like √2, seem closest in nature to the rationals, while we might expect that non-algebraic numbers, the transcedentals, to live apart and not to have close rational neighbors. Surprisingly, the opposite is true. On the one hand, it can be proved that any irrational number that can be well-approximated by rationals (in a sense that can be made precise) must be transcendental. Indeed this affords one of the standard techniques for showing that a number is transcendental." (Peter M. Higgins, "Number Story: From Counting to Cryptography", 2008)

"[...] transcendental numbers, those numbers that lie beyond those that arise through euclidean geometry and ordinary algebraic equations. [...] The transcendentals are the numbers that fill the huge void between the more familiar algebraic numbers and the collection of all decimal expansions: to use an astronomical comparison, the transcendentals are the dark matter of the number world." (Peter M Higgins, "Number Story: From Counting to Cryptography", 2008)

"Transcendental numbers then are numerous but exceedingly slippery. As a rule of thumb, a number that arises in mathematics is almost always transcendental unless it is obvious that it is not. However, showing that a particular number is transcendental can be exceedingly difficult. Number theory throws up endless problems of this kind where everyone feels sure what the answer must be but at the same time no-one has any real idea how it could ever by proved." (Peter M. Higgins, "Number Story: From Counting to Cryptography", 2008)

"It turns out π is different. Not only is it incapable of being expressed as a fraction, but in fact π fails to satisfy any algebraic relationship whatsoever. What does π do? It doesn’t do anything. It is what it is. Numbers like this are called transcendental (Latin for 'climbing beyond'). Transcendental numbers - and there are lots of them - are simply beyond the power of algebra to describe." (Paul Lockhart, "Measurement", 2012)

"A transcendental number is defined as a number that isn’t the solution of any polynomial equation with integer constants times the x’s." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

Previous Post <<||>> Next Post

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

Douglas T Ross - Collected Quotes

"Automatic design has the computer do too much and the human do too little, whereas automatic programming has the human do too much and...