Showing posts with label algebra. Show all posts
Showing posts with label algebra. Show all posts

03 April 2025

Terry Gannon - Collected Quotes

"In modern mathematics there is a strong tendency towards formulations of concepts that minimise the number and significance of arbitrary choices. This crispness tends to emphasise the naturality of the construction or definition, at the expense sometimes of accessibility. Our mathematics is more conceptual today – more beautiful perhaps – but the cost of less explicitness is the compartmentalism that curses our discipline." (Terry Gannon, "Moonshine Beyond the Monster: The Bridge Connecting Algebra, Modular Forms and Physics", 2006)

"Like moonlight itself, Monstrous Moonshine is an indirect phenomenon. Just as in the theory of moonlight one must introduce the sun, so in the theory of Moonshine one must go well beyond the Monster. Much as a book discussing moonlight may include paragraphs on sunsets or comet tails, so do we discuss fusion rings, Galois actions and knot invariants." (Terry Gannon, "Moonshine Beyond the Monster: The Bridge Connecting Algebra, Modular Forms and Physics", 2006)

"Moonshine concerns the occurrence of modular forms in algebra and physics, and care is taken to avoid analytic complications as much as possible. But spaces here are unavoidably infinite-dimensional, and through this arise subtle but significant points of contact with analysis." (Terry Gannon, "Moonshine Beyond the Monster: The Bridge Connecting Algebra, Modular Forms and Physics", 2006)

"Moonshine forms a way of explaining the mysterious connection between the monster finite group and modular functions from classical number theory. The theory has evolved to describe the relationship between finite groups, modular forms and vertex operator algebras." (Terry Gannon, "Moonshine Beyond the Monster: The Bridge Connecting Algebra, Modular Forms and Physics", 2006)

"Moonshine is interested in the correlation functions of a class of extremely symmetrical and well-behaved quantum field theories called rational conformal field theories - these theories are so special that their correlation functions can be computed exactly and perturbation is not required." (Terry Gannon, "Moonshine Beyond the Monster: The Bridge Connecting Algebra, Modular Forms and Physics", 2006)

"Moonshine is profoundly connected with physics (namely conformal field theory and string theory). String theory proposes that the elementary particles (electrons, photons, quarks, etc.) are vibrational modes on a string of length about 10^−33 cm. These strings can interact only by splitting apart or joining together – as they evolve through time, these (classical) strings will trace out a surface called the world-sheet. Quantum field theory tells us that the quantum quantities of interest (amplitudes) can be perturbatively computed as weighted averages taken over spaces of these world-sheets. Conformally equivalent world-sheets should be identified, so we are led to interpret amplitudes as certain integrals over moduli spaces of surfaces. This approach to string theory leads to a conformally invariant quantum field theory on two-dimensional space-time, called conformal field theory (CFT). The various modular forms and functions arising in Moonshine appear as integrands in some of these genus-1 (‘1-loop’) amplitudes: hence their modularity is manifest." (Terry Gannon, "Moonshine Beyond the Monster: The Bridge Connecting Algebra, Modular Forms and Physics", 2006)

"Physics reduces Moonshine to a duality between two different pictures of quantum field theory: the Hamiltonian one, which concretely gives us from representation theory the graded vector spaces, and another, due to Feynman, which manifestly gives us modularity. In particular, physics tells us that this modularity is a topological effect, and the group SL2(Z) directly arises in its familiar role as the modular group of the torus." (Terry Gannon, "Moonshine Beyond the Monster: The Bridge Connecting Algebra, Modular Forms and Physics", 2006)

"The appeal of Monstrous Moonshine lies in its mysteriousness: it unexpectedly associates various special modular functions with the Monster, even though modular functions and elements of Mare conceptually incommensurable. Now, ‘understanding’ something means to embed it naturally into a broader context. Why is the sky blue? Because of the way light scatters in gases. Why does light scatter in gases the way it does? Because of Maxwell’s equations. In order to understand Monstrous Moonshine, to resolve the mystery, we should search for similar phenomena, and fit them all into the same story." (Terry Gannon, "Moonshine Beyond the Monster: The Bridge Connecting Algebra, Modular Forms and Physics", 2006)

15 September 2023

On Art VI: Algebra

"We think only through the medium of words. Languages are true analytical methods. Algebra, which is adapted to its purpose in every species of expression, in the most simple, most exact, and best manner possible, is at the same time a language and an analytical method. The art of reasoning is nothing more than a language well arranged. (Abbé de Condillac, "System of Logic", cca. 1781)

"Algebra, as an art, can be of no use to any one in the business of life; certainly not as taught in the schools. I appeal to every man who has been through the school routine whether this be not the case. Taught as an art it is of little use in the higher mathematics, as those are made to feel who attempt to study the differential calculus without knowing more of the principles than is contained in books of rules." (Augustus de Morgan, "Elements of Algebra", 1837)

"The difficulties which so many have felt in the doctrine of Negative and Imaginary Quantities in Algebra forced themselves long ago on my attention […] And while agreeing with those who had contended that negatives and imaginaries were not properly quantities at all, I still felt dissatisfied with any view which should not give to them, from the outset, a clear interpretation and meaning [...] It early appeared to me that these ends might be attained by our consenting to regard Algebra as being no mere Art, nor Language, nor primarily a Science of Quantity; but rather as the Science of Order in Progression." (William R Hamilton, "Lectures on Quaternions: Containing a Systematic Statement of a New Mathematical Method…", 1853)

"By the help of God and with His precious assistance I say that algebra is a scientific art. The objects with which it deals are absolute numbers and (geometrical) magnitudes which, though themselves unknown, are related to things which are known, whereby the determination of the unknown quantities is possible. Such a thing is either a quantity or a unique relation, which is only determined by careful examination. […] What one searches for in the algebraic art are the relations which lead from the known to the unknown, to discover which is the object of algebra as stated above." (Omar Khayyam [quoted by Daoud Suleiman Kasir in "The Algebra of Omar Khayyam", 1931)

"This method of subjecting the infinite to algebraic manipulations is called differential and integral calculus. It is the art of numbering and measuring with precision things the existence of which we cannot even conceive. Indeed, would you not think that you are being laughed at, when told that there are lines infinitely great which form infinitely small angles? Or that a line which is straight so long as it is finite would, by changing its direction infinitely little, become an infinite curve? Or that there are infinite squares, infinite cubes, and infinities of infinities, one greater than another, and that, as compared with the ultimate infinitude, those which precede it are as nought. All these things at first appear as excess of frenzy; yet, they bespeak the great scope and subtlety of the human spirit, for they have led to the discovery of truths hitherto undreamt of." (Voltaire)

06 August 2021

On Homology

"Speaking roughly, a homology theory assigns groups to topological spaces and homomorphisms to continuous maps of one space into another. To each array of spaces and maps is assigned an array of groups and homomorphisms. In this way, a homology theory is an algebraic image of topology. The domain of a homology theory is the topologist’s field of study. Its range is the field of study of the algebraist. Topological problems are converted into algebraic problems." (Samuel Eilenberg &Norman E Steenrod, "Foundations of Algebraic Topology", 1952)

"The philosophical emphasis here is: to solve a geometrical problem of a global nature, one first reduces it to a homotopy theory problem; this is in turn reduced to an algebraic problem and is solved as such. This path has historically been the most fruitful one in algebraic topology. (Brayton Gray, "Homotopy Theory", Pure and Applied Mathematics Vol. 64, 1975)

"The various homology and cohomology theories appear as complicated machines, the end product of which is an assignment of a graded group to a topological space, through a series of processes which look so arbitrary that one wonders why they succeed at all." (Jean Dieudonné, "A History of Algebraic and Differential Topology, 1900 - 1960", 1989)

"Homology theory introduces a new connection between invariants of manifolds. Continuing the "physical" analogy, we say that a homology theory studies the intrinsic structure of a manifold by breaking it into a system of portions arranged simply, or, more precisely, in a standard way. Then, given certain rules for glueing the portions together, the theory obtains the whole manifold. The main problem consists in proving the resultant geometric quantities that are independent of the decomposition and glueing (i.e., proving the topological invariance of the characteristics)." (Michael IMonastyrsky, "Topology of Gauge Fields and Condensed Matter", 1993)

"Homology theory studies properties of manifolds by decomposing them into simpler parts. The structure of these parts can be investigated easily by introducing algebraic characteristics associated with these decompositions. The main difficulty lies in proving that the corresponding characteristics of the decomposition, in fact, do not depend on the particular choice of the decomposition but are rather a topological invariant of the manifold itself." (Michael I Monastyrsky, "Riemann, Topology, and Physics", 1999)

"Although it is not difficult to count the holes in a real pretzel in your hand, prior to eating it, when a surface pops out of an abstract mathematical construction it can be very difficult to figure out its properties, such as how many holes it has. The cohomology groups can help us to do so." (Avner Ash & Robert Gross, "Fearless Symmetry: Exposing the hidden patterns of numbers", 2006)

"Topology is a child of twentieth century mathematical thinking. It allows us to consider the shape and structure of an object without being wedded to its size or to the distances between its component parts. Knot theory, homotopy theory, homology theory, and shape theory are all part of basic topology. It is often quipped that a topologist does not know the difference between his coffee cup and his donut - because each has the same abstract 'shape' without looking at all alike." (Steven G Krantz, "Essentials of Topology with Applications”, 2009)

"At first, topology can seem like an unusually imprecise branch of mathematics. It’s the study of squishy play-dough shapes capable of bending, stretching and compressing without limit. But topologists do have some restrictions: They cannot create or destroy holes within shapes. […] While this might seem like a far cry from the rigors of algebra, a powerful idea called homology helps mathematicians connect these two worlds. […] homology infers an object’s holes from its boundaries, a more precise mathematical concept. To study the holes in an object, mathematicians only need information about its boundaries." (Kelsey Houston-Edwards, "How Mathematicians Use Homology to Make Sense of Topology", Quanta Magazine, 2021)

"Homology translates this world of vague shapes into the rigorous world of algebra, a branch of mathematics that studies particular numerical structures and symmetries. Mathematicians study the properties of these algebraic structures in a field known as homological algebra. From the algebra they indirectly learn information about the original topological shape of the data. Homology comes in many varieties, all of which connect with algebra." (Kelsey Houston-Edwards, "How Mathematicians Use Homology to Make Sense of Topology", Quanta Magazine, 2021)

"Mathematicians extract a shape’s homology from its chain complex, which provides structured data about the shape’s component parts and their boundaries - exactly what you need to describe holes in every dimension. […] The definition of homology is rigid enough that a computer can use it to find and count holes, which helps establish the rigor typically required in mathematics. It also allows researchers to use homology for an increasingly popular pursuit: analyzing data." (Kelsey Houston-Edwards, "How Mathematicians Use Homology to Make Sense of Topology", Quanta Magazine, 2021)

02 July 2021

Out of Context: Algebra is... (Definitions)

"Algebra is a general Method of Computation by certain Signs and Symbols which have been contrived for this Purpose, and found convenient. It is called an Universal Arithmetic, and proceeds by Operations and Rules similar to those in Common Arithmetic, founded upon the same Principles." (Colin Maclaurin, "A Treatise on Algebra", 1748)

"Algebra is but written geometry and geometry is but figured algebra." (Sophie Germain, "Mémoire sur les Surfaces Élastiques", 1880)

"Whoever thinks algebra is a trick in obtaining unknowns has thought it in vain. No attention should be paid to the fact that algebra and geometry are different in appearance. Algebras are geometric facts which are proved." (Omar Khayyam [quoted by J.J. Winter and W. Arafat, "The Algebra of ‘Umar Khayyam’", Journal of the Royal Asiatic Society of Bengal, Volume 41, 1950)

"[…] algebra is the intellectual instrument which has been created for rendering clear the quantitative aspects of the world." (Alfred North Whitehead, "The Organization of Thought", 1974)

"Algebra is the offer made by the devil to the mathematician. The devil says: I will give you this powerful machine, it will answer any question you like. All you need to do is give me your soul: give up geometry and you will have this marvelous machine." (Michael F Atiyah, 2004)

"Algebra is a way to bring us to certainty in mathematics; but must it be presently condemned as an ill way, because there are some questions in mathematics, which a man cannot come to certainty in by the way of Algebra?" (John Locke)

03 June 2021

Calculus II: Integral Calculus

"I see with much pleasure that you are working on a large work on the integral Calculus [...] The reconciliation of the methods which you are planning to make, serves to clarify them mutually, and what they have in common contains very often their true metaphysics; this is why that metaphysics is almost the last thing that one discovers. The spirit arrives at the results as if by instinct; it is only on reflecting upon the route that it and others have followed that it succeeds in generalising the methods and in discovering its metaphysics." (Pierre-Simon Laplace [letter to Sylvestre F Lacroix] 1792)

"The effects of heat are subject to constant laws which cannot be discovered without the aid of mathematical analysis. The object of the theory is to demonstrate these laws; it reduces all physical researches on the propagation of heat, to problems of the integral calculus, whose elements are given by experiment. No subject has more extensive relations with the progress of industry and the natural sciences; for the action of heat is always present, it influences the processes of the arts, and occurs in all the phenomena of the universe." (Jean-Baptiste-Joseph Fourier, "The Analytical Theory of Heat", 1822)

"If one looks at the different problems of the integral calculus which arise naturally when he wishes to go deep into the different parts of physics, it is impossible not to be struck by the analogies existing. Whether it be electrostatics or electrodynamics, the propagation of heat, optics, elasticity, or hydrodynamics, we are led always to differential equations of the same family." (Henri Poincaré, "Sur les Equations aux Dérivées Partielles de la Physique Mathématique", American Journal of Mathematics Vol. 12, 1890)

"Everyone who understands the subject will agree that even the basis on which the scientific explanation of nature rests is intelligible only to those who have learned at least the elements of the differential and integral calculus, as well as analytical geometry." (Felix Klein, Jahresbericht der Deutsche Mathematiker Vereinigung Vol. 1, 1902)

"The chief difficulty of modern theoretical physics resides not in the fact that it expresses itself almost exclusively in mathematical symbols, but in the psychological difficulty of supposing that complete nonsense can be seriously promulgated and transmitted by persons who have sufficient intelligence of some kind to perform operations in differential and integral calculus […]" (Celia Green, "The Decline and Fall of Science", 1976)

"The acceptance of complex numbers into the realm of algebra had an impact on analysis as well. The great success of the differential and integral calculus raised the possibility of extending it to functions of complex variables. Formally, we can extend Euler's definition of a function to complex variables without changing a single word; we merely allow the constants and variables to assume complex values. But from a geometric point of view, such a function cannot be plotted as a graph in a two-dimensional coordinate system because each of the variables now requires for its representation a two-dimensional coordinate system, that is, a plane. To interpret such a function geometrically, we must think of it as a mapping, or transformation, from one plane to another." (Eli Maor, "e: The Story of a Number", 1994)

"By studying analytic functions using power series, the algebra of the Middle Ages was connected to infinite operations (various algebraic operations with infinite series). The relation of algebra with infinite operations was later merged with the newly developed differential and integral calculus. These developments gave impetus to early stages of the development of analysis. In a way, we can say that analyticity is the notion that first crossed the boundary from finite to infinite by passing from polynomials to infinite series. However, algebraic properties of polynomial functions still are strongly present in analytic functions." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"Thus, calculus proceeds in two phases: cutting and rebuilding. In mathematical terms, the cutting process always involves infinitely fine subtraction, which is used to quantify the differences between the parts. Accordingly, this half of the subject is called differential calculus. The reassembly process always involves infinite addition, which integrates the parts back into the original whole. This half of the subject is called integral calculus." (Steven H Strogatz, "Infinite Powers: The Story of Calculus - The Most Important Discovery in Mathematics", 2019)

"This method of subjecting the infinite to algebraic manipulations is called differential and integral calculus. It is the art of numbering and measuring with precision things the existence of which we cannot even conceive. Indeed, would you not think that you are being laughed at, when told that there are lines infinitely great which form infinitely small angles? Or that a line which is straight so long as it is finite would, by changing its direction infinitely little, become an infinite curve? Or that there are infinite squares, infinite cubes, and infinities of infinities, one greater than another, and that, as compared with the ultimate infinitude, those which precede it are as nought. All these things at first appear as excess of frenzy; yet, they bespeak the great scope and subtlety of the human spirit, for they have led to the discovery of truths hitherto undreamt of." (Voltaire)

Calculus I: Differential Calculus I

"Thus, differential calculus has all the exactitude of other algebraic operations." (Pierre-Simon Laplace, "A Philosophical Essay on Probabilities", 1814)

"The invention of a new symbol is a step in the advancement of civilisation. Why were the Greeks, in spite of their penetrating intelligence and their passionate pursuit of Science, unable to carry Mathematics farther than they did? and why, having formed the conception of the Method of Exhaustions, did they stop short of that of the Differential Calculus? It was because they had not the requisite symbols as means of expression. They had no Algebra. Nor was the place of this supplied by any other symbolical language sufficiently general and flexible; so that they were without the logical instruments necessary to construct the great instrument of the Calculus." (George H Lewes "Problems of Life and Mind", 1873)

"Everyone who understands the subject will agree that even the basis on which the scientific explanation of nature rests is intelligible only to those who have learned at least the elements of the differential and integral calculus, as well as analytical geometry." (Felix Klein, Jahresbericht der Deutsche Mathematiker Vereinigung Vol. 1, 1902)

"The chief difficulty of modern theoretical physics resides not in the fact that it expresses itself almost exclusively in mathematical symbols, but in the psychological difficulty of supposing that complete nonsense can be seriously promulgated and transmitted by persons who have sufficient intelligence of some kind to perform operations in differential and integral calculus […]" (Celia Green, "The Decline and Fall of Science", 1976)

"The invention of the differential calculus was based on the recognition that an instantaneous rate is the asymptotic limit of averages in which the time interval involved is systematically shrunk. This is a concept that mathematicians recognized long before they had the skill to actually compute such an asymptotic limit." (Michael Guillen,"Bridges to Infinity: The Human Side of Mathematics", 1983)

"The acceptance of complex numbers into the realm of algebra had an impact on analysis as well. The great success of the differential and integral calculus raised the possibility of extending it to functions of complex variables. Formally, we can extend Euler's definition of a function to complex variables without changing a single word; we merely allow the constants and variables to assume complex values. But from a geometric point of view, such a function cannot be plotted as a graph in a two-dimensional coordinate system because each of the variables now requires for its representation a two-dimensional coordinate system, that is, a plane. To interpret such a function geometrically, we must think of it as a mapping, or transformation, from one plane to another." (Eli Maor, "e: The Story of a Number", 1994)

"By studying analytic functions using power series, the algebra of the Middle Ages was connected to infinite operations (various algebraic operations with infinite series). The relation of algebra with infinite operations was later merged with the newly developed differential and integral calculus. These developments gave impetus to early stages of the development of analysis. In a way, we can say that analyticity is the notion that first crossed the boundary from finite to infinite by passing from polynomials to infinite series. However, algebraic properties of polynomial functions still are strongly present in analytic functions." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996) 

"In fact the complex numbers form a field. [...] So however strange you may feel the very notion of a complex number to be, it does turn out to provide a 'normal' type of arithmetic. In fact it gives you a tremendous bonus not available with any of the other number systems. [...] The fundamental theorem of algebra is just one of several reasons why the complex-number system is such a 'nice' one. Another important reason is that the field of complex numbers supports the development of a powerful differential calculus, leading to the rich theory of functions of a complex variable." (Keith Devlin, "Mathematics: The New Golden Age", 1998)

"Thus, calculus proceeds in two phases: cutting and rebuilding. In mathematical terms, the cutting process always involves infinitely fine subtraction, which is used to quantify the differences between the parts. Accordingly, this half of the subject is called differential calculus. The reassembly process always involves infinite addition, which integrates the parts back into the original whole. This half of the subject is called integral calculus." (Steven H Strogatz, "Infinite Powers: The Story of Calculus - The Most Important Discovery in Mathematics", 2019)

"Nothing has afforded me so convincing a proof of the unity of the Deity as these purely mental conceptions of numerical and mathematical science which have been by slow degrees vouchsafed to man, and are still granted in these latter times by the Differential Calculus, now superseded by the Higher Algebra, all of which must have existed in that sublimely omniscient Mind from eternity." (Mary Somerville)

02 June 2021

On Structure: Structure in Mathematics II

"[…] the major mathematical research acquires an organization and orientation similar to the poetical function which, adjusting by means of metaphor disjunctive elements, displays a structure identical to the sensitive universe. Similarly, by means of its axiomatic or theoretical foundation, mathematics assimilates various doctrines and serves the instructive purpose, the one set up by the unifying moral universe of concepts." (Dan Barbilian, "The Autobiography of the Scientist", 1940)

"Mathematicians deal with possible worlds, with an infinite number of logically consistent systems. Observers explore the one particular world we inhabit. Between the two stands the theorist. He studies possible worlds but only those which are compatible with the information furnished by observers. In other words, theory attempts to segregate the minimum number of possible worlds which must include the actual world we inhabit. Then the observer, with new factual information, attempts to reduce the list further. And so it goes, observation and theory advancing together toward the common goal of science, knowledge of the structure and observation of the universe." (Edwin P Hubble, "The Problem of the Expanding Universe", 1941)

"To say that mathematics in general has been reduced to logic hints at some new firming up of mathematics at its foundations. This is misleading. Set theory is less settled and more conjectural than the classical mathematical superstructure than can be founded upon it." (Willard van Orman Quine, "Elementary Logic", 1941)

"One expects a mathematical theorem or a mathematical theory not only to describe and to classify in a simple and elegant way numerous and a priori disparate special cases. One also expects ‘elegance’ in its ‘architectural’ structural makeup." (John von Neumann, "The Mathematician" [in "Works of the Mind" Vol. I (1), 1947])

"The constructions of the mathematical mind are at the same time free and necessary. The individual mathematician feels free to define his notions and set up his axioms as he pleases. But the question is will he get his fellow-mathematician interested in the constructs of his imagination. We cannot help the feeling that certain mathematical structures which have evolved through the combined efforts of the mathematical community bear the stamp of a necessity not affected by the accidents of their historical birth. Everybody who looks at the spectacle of modern algebra will be struck by this complementarity of freedom and necessity." (Hermann Weyl, "A Half-Century of Mathematics", The American Mathematical Monthly, 1951)

"Mathematicians create by acts of insight and intuition. Logic then sanctions the conquests of intuition. It is the hygiene that mathematics practice to keep its ideas healthy and strong. Moreover, the whole structure rests fundamentally on uncertain ground, the intuitions of man." (Morris Kline, "Mathematics in Western Culture", 1953)

"Mathematics is not only the model along the lines of which the exact sciences are striving to design their structure; mathematics is the cement which holds the structure together." (Tobias Dantzig, "Number: The Language of Science" 4th Ed, 1954)

"Mathematics, springing from the soil of basic human experience with numbers and data and space and motion, builds up a far-flung architectural structure composed of theorems which reveal insights into the reasons behind appearances and of concepts which relate totally disparate concrete ideas." (Saunders MacLane, "Of Course and Courses"The American Mathematical Monthly, Vol 61, No 3, 1954)

"Chess combines the beauty of mathematical structure with the recreational delights of a competitive game." (Martin Gardner, "Mathematics, Magic, and Mystery", 1956)

"Probability is a mathematical discipline with aims akin to those, for example, of geometry or analytical mechanics. In each field we must carefully distinguish three aspects of the theory: (a) the formal logical content, (b) the intuitive background, (c) the applications. The character, and the charm, of the whole structure cannot be appreciated without considering all three aspects in their proper relation." (William Feller, "An Introduction to Probability Theory and Its Applications", 1957)

"If the system exhibits a structure which can be represented by a mathematical equivalent, called a mathematical model, and if the objective can be also so quantified, then some computational method may be evolved for choosing the best schedule of actions among alternatives. Such use of mathematical models is termed mathematical programming."  (George Dantzig, "Linear Programming and Extensions", 1959)

11 May 2021

Mathematics through Students' Eyes II

"[…] mathematical verities flow from a small number of self-evident propositions by a chain of impeccable reasonings; they impose themselves not only on us, but on nature itself. They fetter, so to speak, the Creator and only permit him to choose between some relatively few solutions. A few experiments then will suffice to let us know what choice he has made. From each experiment a number of consequences will follow by a series of mathematical deductions, and in this way each of them will reveal to us a corner of the universe. This, to the minds of most people, and to students who are getting their first ideas of physics, is the origin of certainty in science." (Henri Poincaré, "The Foundations of Science", 1913)

"The way to enable a student to apprehend the instrumental value of arithmetic is not to lecture him on the benefit it will be to him in some remote and uncertain future, but to let him discover that success in something he is interested in doing depends on ability to use numbers." (John Dewey, "Democracy and Education: An Introduction to the Philosophy of Education", 1916)

"It seems to be the impression among students that mathematical physics consists in deriving a large number of partial differential equations and then solving them, individually, by an assortment of special mutually unrelated devices. It has not been made clear that there is any underlying unity of method and one has often been left entirely in the dark as to what first suggested a particular device to the mind of its inventor." (Arthur G Webster, "Partial Differential Equations of Mathematical Physics", 1927)

"[…] there are terms which cannot be defined, such as number and quantity. Any attempt at a definition would only throw difficulty in the student’s way, which is already done in geometry by the attempts at an explanation of the terms point, straight line, and others, which are to be found in treatise on that subject." (Augustus de Morgan, "On the Study and Difficulties of Mathematics", 1943)

"To some people, statistics is ‘quartered pies, cute little battleships and tapering rows of sturdy soldiers in diversified uniforms’. To others, it is columns and columns of numerical facts. Many regard it as a branch of economics. The beginning student of the subject considers it to be largely mathematics." (The Editors, "Statistics, The Physical Sciences and Engineering", The American Statistician, Vol. 2, No. 4, 1948)

"Unfortunately, the mechanical way in which calculus sometimes is taught fails to present the subject as the outcome of a dramatic intellectual struggle which has lasted for twenty-five hundred years or more, which is deeply rooted in many phases of human endeavors and which will continue as long as man strives to understand himself as well as nature. Teachers, students, and scholars who really want to comprehend the forces and appearances of science must have some understanding of the present aspect of knowledge as a result of historical evolution." (Richard Curand [forward to Carl B Boyer’s "The History of the Calculus and Its Conceptual Development", 1949])

Mathematics through Students' Eyes I

"Often I have considered the fact that most of the difficulties which block the progress of students trying to learn analysis stem from this: that although they understand little of ordinary algebra, still they attempt this more subtle art. From this it follows not only that they remain on the fringes, but in addition they entertain strange ideas about the concept of the infinite, which they must try to use." (Leonhard Euler, "Introduction to Analysis of the Infinite", 1748)

"The first thing to be attended to in reading any algebraical treatise, is the gaining a perfect understanding of the different processes there exhibited, and of their connection with one another. This cannot be attained by a mere reading of the book, however great the attention which may be given. It is impossible, in a mathematical work, to fill up every process in the manner in which it must be filled up in the mind of the student before he can be said to have completely mastered it. Many results must be given of which the details are suppressed, such are the additions, multiplications, extractions of the square root, etc., with which the investigations abound. These must not be taken on trust by the student, but must be worked by his own pen, which must never be out of his hand, while engaged in any algebraical process." (Augustus de Morgan, "On the Study and Difficulties of Mathematics", 1830)

"This science, Geometry, is one of indispensable use and constant reference, for every student of the laws of nature; for the relations of space and number are the alphabet in which those laws are written. But besides the interest and importance of this kind which geometry possesses, it has a great and peculiar value for all who wish to understand the foundations of human knowledge, and the methods by which it is acquired. For the student of geometry acquires, with a degree of insight and clearness which the unmathematical reader can but feebly imagine, a conviction that there are necessary truths, many of them of a very complex and striking character; and that a few of the most simple and self-evident truths which it is possible for the mind of man to apprehend, may, by systematic deduction, lead to the most remote and unexpected results." (William Whewell, "The Philosophy of the Inductive Sciences", 1858)

"Besides accustoming the student to demand complete proof, and to know when he has not obtained it, mathematical studies are of immense benefit to his education by habituating him to precision. It is one of the peculiar excellencies of mathematical discipline, that the mathematician is never satisfied with à peu près. He requires the exact truth." (John S Mill, "An Examination of Sir William Hamilton's Philosophy", 1865)

"Therefore, the great business of the scientific teacher is, to imprint the fundamental, irrefragable facts of his science, not only by words upon the mind, but by sensible impressions upon the eye, and ear, and touch of the student, in so complete a manner, that every term used, or law enunciated, should afterwards call up vivid images of the particular structural, or other, facts which furnished the demonstration of the law, or the illustration of the term." (Thomas H Huxley, "Lay Sermons, Addresses and Reviews", 1870)

"Thought is symbolical of Sensation as Algebra is of Arithmetic, and because it is symbolical, is very unlike what it symbolises. For one thing, sensations are always positive; in this resembling arithmetical quantities. A negative sensation is no more possible than a negative number. But ideas, like algebraic quantities, may be either positive or negative. However paradoxical the square of a negative quantity, the square root of an unknown quantity, nay, even in imaginary quantity, the student of Algebra finds these paradoxes to be valid operations. And the student of Philosophy finds analogous paradoxes in operations impossible in the sphere of Sense. Thus although it is impossible to feel non-existence, it is possible to think it; although it is impossible to frame an image of Infinity, we can, and do, form the idea, and reason on it with precision." (George H Lewes "Problems of Life and Mind", 1873)

"The most striking characteristic of the written language of algebra and of the higher forms of the calculus is the sharpness of definition, by which we are enabled to reason upon the symbols by the mere laws of verbal logic, discharging our minds entirely of the meaning of the symbols, until we have reached a stage of the process where we desire to interpret our results. The ability to attend to the symbols, and to perform the verbal, visible changes in the position of them permitted by the logical rules of the science, without allowing the mind to be perplexed with the meaning of the symbols until the result is reached which you wish to interpret, is a fundamental part of what is called analytical power. Many students find themselves perplexed by a perpetual attempt to interpret not only the result, but each step of the process. They thus lose much of the benefit of the labor-saving machinery of the calculus and are, indeed, frequently incapacitated for using it." (Thomas Hill, "Uses of Mathesis", Bibliotheca Sacra Vol. 32 (127), 1875)

10 April 2021

Catastrophe Theory III

"On the plane of philosophy properly speaking, of metaphysics, catastrophe theory cannot, to be sure, supply any answer to the great problems which torment mankind. But it favors a dialectical, Heraclitean view of the universe, of a world which is the continual theatre of the battle between 'logoi', between archetypes." (René F Thom, "Catastrophe Theory: Its Present State and Future Perspectives", 1975)

"At the large scale where many processes and structures appear continuous and stable much of the time, important changes may occur discontinuously. When only a few variables are involved, as well as an optimizing process, the event may be analyzed using catastrophe theory. As the number of variables in- creases the bifurcations can become more complex to the point where chaos theory becomes the relevant approach. That chaos theory as well as the fundamentally discontinuous quantum processes may be viewed through fractal eyeglasses can also be admitted. We can even argue that a cascade of bifurcations to chaos contains two essentially structural catastrophe points, namely the initial bifurcation point at which the cascade commences and the accumulation point at which the transition to chaos is finally achieved." (J Barkley Rosser Jr., "From Catastrophe to Chaos: A General Theory of Economic Discontinuities", 1991)

"Catastrophe theory is a local theory, telling us what a function looks like  in a small neighborhood of a critical point; it says nothing about what the function may be doing far away from the singularity. Yet most of the applications of the theory [...]  involve extrapolating these rock-solid, local results to regions that may  well be distant in time and space from the singularity." (John L Casti, "Five Golden Rules", 1995)

"Chaos and catastrophe theories are among the most interesting recent developments in nonlinear modeling, and both have captured the interests of scientists in many disciplines. It is only natural that social scientists should be concerned with these theories. Linear statistical models have proven very useful in a great deal of social scientific empirical analyses, as is evidenced by how widely these models have been used for a number of decades. However, there is no apparent reason, intuitive or otherwise, as to why human behavior should be more linear than the behavior of other things, living and nonliving. Thus an intellectual movement toward nonlinear models is an appropriate evolutionary movement in social scientific thinking, if for no other reason than to expand our paradigmatic boundaries by encouraging greater flexibility in our algebraic specifications of all aspects of human life." (Courtney Brown, "Chaos and Catastrophe Theories", 1995)

"[...] chaos and catastrophe theories per se address behavioral phenomena that are consequences of two general types of nonlinear dynamic behavior. In the most elementary of behavioral terms, chaotic phenomena are a class of deterministic processes that seem to mimic random or stochastic dynamics. Catastrophe phenomena, on the other hand, are a class of dynamic processes that exhibit a sudden and large scale change in at least one variable in correspondence with relatively small changes in other variables or, in some cases, parameters." (Courtney Brown, "Chaos and Catastrophe Theories", 1995)

"Chaos and catastrophe theories directly address the social scientists' need to understand classes of nonlinear complexities that are certain to appear in social phenomena. The probabilistic properties of many chaos and catastrophe models are simply not known, and there is little likelihood that general procedures will be developed soon to alleviate the difficulties inherent with probabilistic approaches in such complicated settings." (Courtney Brown, "Chaos and Catastrophe Theories", 1995)

"Fundamental to catastrophe theory is the idea of a bifurcation. A bifurcation is an event that occurs in the evolution of a dynamic system in which the characteristic behavior of the system is transformed. This occurs when an attractor in the system changes in response to change in the value of a parameter. A catastrophe is one type of bifurcation. The broader framework within which catastrophes are located is called dynamical bifurcation theory." (Courtney Brown, "Chaos and Catastrophe Theories", 1995)

"Probably the most important reason that catastrophe theory received as much popular press as it did in the mid-1970s is not because of its unchallenged mathematical elegance, but because it appears to offer a coherent mathematical framework within which to talk about how discontinuous behaviors - stock market booms and busts or cellular differentiation, for instance - might emerge as the result of smooth changes in the inputs to a system, things like interest rates in a speculative market or the diffusion rate of chemicals in a developing embryo. These kinds of changes are often termed bifurcations, and playa central role in applied mathematical modeling. Catastrophe theory enables us to understand more clearly how - and why - they occur." (John L Casti, "Five Golden Rules", 1995)

"The goal of catastrophe theory is to classify smooth functions with degenerate critical points, just as Morse's Theorem gives us a complete classification for Morse functions. The difficulty, of course, is that there are a lot more ways for critical points to 'go bad' than there are for them to stay 'nice'. Thus, the classification problem is much harder for functions having degenerate critical points, and has not yet been fully carried out for all possible types of degeneracies. Fortunately, though, we can obtain a partial classification for those functions having critical points that are not too bad. And this classification turns out to be sufficient to apply the results to a wide range of phenomena like the predator-prey situation sketched above, in which 'jumps' in the system's biomass can occur when parameters describing the process change only slightly." (John L Casti, "Five Golden Rules", 1995)

"The reason catastrophe theory can tell us about such abrupt changes in a system's behavior is that we usually observe a dynamical system when it's at or near its steady-state, or equilibrium, position. And under various assumptions about the nature of the system's dynamical law of motion, the set of all possible equilibrium states is simply the set of critical points of a smooth function closely related to the system dynamics. When these critical points are nondegenerate, Morse's Theorem applies. But it is exactly when they become degenerate that the system can move sharply from one equilibrium position to another. The Thorn Classification Theorem tells when such shifts will occur and what direction they will take." (John L Casti, "Five Golden Rules", 1995)

10 February 2021

On Complex Numbers XIX (Euler's Formula II)

"The equation e^πi+1 = 0 is true only by virtue of a large number of profound connections across many fields. It is true because of what it means! And it means what it means because of all those metaphors and blends in the conceptual system of a mathematician who understands what it means. To show why such an equation is true for conceptual reasons is to give what we have called an idea analysis of the equation." (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being", 2000)

"The equation e^πi =-1 says that the function w= e^z, when applied to the complex number πi as input, yields the real number -1 as the output, the value of w. In the complex plane, πi is the point [0,π) - π on the i-axis. The function w=e^z maps that point, which is in the z-plane, onto the point (-1, 0) - that is, -1 on the x-axis-in the w-plane. […] But its meaning is not given by the values computed for the function w=e^z. Its meaning is conceptual, not numerical. The importance of  e^πi =-1 lies in what it tells us about how various branches of mathematics are related to one another - how algebra is related to geometry, geometry to trigonometry, calculus to trigonometry, and how the arithmetic of complex numbers relates to all of them." (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being", 2000)

"The significance of e^πi+1 = 0 is thus a conceptual significance. What is important is not just the numerical values of e, π, i, 1, and 0 but their conceptual meaning. After all, e, π, i, 1, and 0 are not just numbers like any other numbers. Unlike, say, 192,563,947.9853294867, these numbers have conceptual meanings in a system of common, important nonmathematical concepts, like change, acceleration, recurrence, and self-regulation.

They are not mere numbers; they are the arithmetizations of concepts. When they are placed in a formula, the formula incorporates the ideas the function expresses as well as the set of pairs of complex numbers it mathematically determines by virtue of those ideas." (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being", 2000)

"We will now turn to e^πi+1 = 0. Our approach will be there as it was here. e^πi+1 = 0 uses the conceptual structure of all the cases we have discussed so far - trigonometry, the exponentials, and the complex numbers. Moreover, it puts together all that conceptual structure. In other words, all those metaphors and blends are simultaneously activated and jointly give rise to inferences that they would not give rise to separately. Our job is to see how e^πi+1 = 0 is a precise consequence that arises when the conceptual structure of these three domains is combined to form a single conceptual blend." (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being", 2000)

"[…] the equation’s five seemingly unrelated numbers (e, i, π, 1, and 0) fit neatly together in the formula like contiguous puzzle pieces. One might think that a cosmic carpenter had jig-sawed them one day and mischievously left them conjoined on Euler’s desk as a tantalizing hint of the unfathomable connectedness of things.[…] when the three enigmatic numbers are combined in this form, e^iπ, they react together to carve out a wormhole that spirals through the infinite depths of number space to emerge smack dab in the heartland of integers." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"Thus, while feelings may be the essence of subjectivity, they are by no means part of our weaker nature - the valences they automatically generate are integral to our thought processes and without them we’d simply be lost. In particular, we’d have no sense of beauty at all, much less be able to feel (there’s that word again) that we’re in the presence of beauty when contemplating a work such as Euler’s formula. After all, e^iπ + 1 = 0 can give people limbic-triggered goosebumps when they first peer with understanding into its depths." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"Today, Euler’s formula is a tool as basic to electrical engineers and physicists as the spatula is to short-order cooks. It’s arguable that the formula’s ability to simplify the design and analysis of circuits contributed to the accelerating pace of electrical innovation during the twentieth century." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"[…] when the three enigmatic numbers are combined in this form, e^iπ, they react together to carve out a wormhole that spirals through the infinite depths of number space to emerge smack dab in the heartland of integers." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"Euler’s formula - although deceptively simple - is actually staggeringly conceptually difficult to apprehend in its full glory, which is why so many mathematicians and scientists have failed to see its extraordinary scope, range, and ontology, so powerful and extensive as to render it the master equation of existence, from which the whole of mathematics and science can be derived, including general relativity, quantum mechanics, thermodynamics, electromagnetism and the strong and weak nuclear forces! It’s not called the God Equation for nothing. It is much more mysterious than any theistic God ever proposed." (Thomas Stark, "God Is Mathematics: The Proofs of the Eternal Existence of Mathematics", 2018)

On Complex Numbers XVI

"When the formulas admit of intelligible interpretation, they are accessions to knowledge; but independently of their interpretation they are invaluable as symbolical expressions of thought. But the most noted instance is the symbol called the impossible or imaginary, known also as the square root of minus one, and which, from a shadow of meaning attached to it, may be more definitely distinguished as the symbol of semi-inversion. This symbol is restricted to a precise signification as the representative of perpendicularity in quaternions, and this wonderful algebra of space is intimately dependent upon the special use of the symbol for its symmetry, elegance, and power."  (Benjamin Peirce, "On the Uses and Transformations of Linear Algebra", 1875)

 "√-1 is take for granted today. No serious mathematician would deny that it is a number. Yet it took centuries for √-1 to be officially admitted to the pantheon of numbers. For almost three centuries, it was controversial; mathematicians didn't know what to make of it; many of them worked with it successfully without admitting its existence. […] Primarily for cognitive reasons. Mathematicians simply could not make it fit their idea of what a number was supposed to be. A number was supposed to be a magnitude. √-1 is not a magnitude comparable to the magnitudes of real numbers. No tree can be √-1 units high. You cannot owe someone √-1 dollars. Numbers were supposed to be linearly ordered. √-1 is not linearly ordered with respect to other numbers." (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being, 2000)

"From a formal perspective, much about complex numbers and arithmetic seems arbitrary. From a purely algebraic point of view, i arises as a solution to the equation x^2+1=0. There is nothing geometric about this - no complex plane at all. Yet in the complex plane, the i-axis is 90° from the x-axis. Why? Complex numbers in the complex plane add like vectors. Why? Complex numbers have a weird rule of multiplication […]" (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being, 2000)

"[…] i is not a real number-not ordered anywhere relative to the real numbers! In other words, it does not even have the central property of ‘numbers’, indicating a magnitude that can be linearly compared to all other magnitudes. You can see why i has been called imaginary. It has almost none of the properties of the small natural numbers-not subitizability, not groupability, and not even relative magnitude. If i is to be a number, it is a number only by virtue of closure and the laws of arithmetic." (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being, 2000)

"The complex plane is just the 90° rotation plane-the rotation plane with the structure imposed by the 90° Rotation metaphor added to it. Multiplication by i is 'just' rotation by 90°. This is not arbitrary; it makes sense. Multiplication by-1 is rotation by 180°. A rotation of 180° is the result of two 90° rotations. Since i times i is -1, it makes sense that multiplication by i should be a rotation by 90°, since two of them yield a rotation by 180°, which is multiplication by -1." (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being, 2000)

"Negative numbers posed some of the same quandaries that the imaginary numbers did to Renaissance mathematicians - they didn’t seem to correspond to quantities associated with physical objects or geometrical figures. But they proved less conceptually challenging than the imaginaries. For instance, negative numbers can be thought of as monetary debts, providing a readily grasped way to make sense of them." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"Raising e to an imaginary-number power can be pictured as a rotation operation in the complex plane. Applying this interpretation to e raised to the 'i times π' power means that Euler’s formula can be pictured in geometric terms as modeling a half-circle rotation." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"The association of multiplication with vector rotation was one of the geometric interpretation's most important elements because it decisively connected the imaginaries with rotary motion. As we'll see, that was a big deal." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"The fact that multiplying positive 4i times positive 4i yields negative 16 seems like saying that the friend of my friend is my enemy. Which in turn suggests that bad things would happen if i and its offspring were granted citizenship in the number world. Unlike real numbers, which always feel friendly toward the friends of their friends, the i-things would plainly be subject to insane fits of jealousy, causing them to treat numbers that cozy up to their friends as threats. That might cause a general breakdown of numerical civility." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"Basis real and imaginary numbers have eternal and necessary reality. Complex numbers do not. They are temporal and contingent in the sense that for complex numbers to exist, we first have to carry out an operation: adding basis real and imaginary numbers together. Complex numbers therefore do not exist in their own right. They are constructed. They are derived. Symmetry breaking is exactly where constructed numbers come into existence. The very act of adding a sine wave to a cosine wave is the sufficient condition to create a broken symmetry: a complex number. The 'Big Bang', mathematically, is simply where a perfect array of basis sine and cosine waves start entering into linear combinations, creating a chain reaction, an 'explosion', of complex numbers - which corresponds to the 'physical' universe." (Thomas Stark, "God Is Mathematics: The Proofs of the Eternal Existence of Mathematics", 2018)

08 February 2021

On Imagination (BC)

"We invoke the imagination and the intervals that it furnishes, since the form itself is without motion or genesis, indivisible and free of all underlying matter, though the elements latent in the form are produced distinctly and individually on the screen of imagination. What projects the images is the understanding; the source of what is projected is the form in the understanding; and what they are projected in is this 'passive nous' that unfolds in revolution about the partlessness of genuine Nous." (Proclus Lycaeus, "A Commentary on the First Book of Euclid’s Elements", cca 5th century)

"But since we have, in our work on the soul, treated of imagination, and the faculty of imagination is identical with that of sense-perception, though the being of a faculty of imagination is different from that of a faculty of sense-perception; and since imagination is the movement set up by a sensory faculty when actually discharging its function, while a dream appears to be an image (for which occurs in sleep - whether simply or in some particular way - is what we call a dream): it manifestly follows that dreaming is an activity of the faculty of sense-perception, but belongs to this faculty qua imaginative." (Aristotle, "On Dreams", 4th century BC)

"It is obvious then, that memory belongs to that part of the soul to which imagination belongs. […] Just as the picture painted on the panel is at once a picture and a portrait, and though one and the same, is both, yet the essence of the two is not the same, and it is possible to think of it both as a picture and as a portrait, so in the same way we must regard the mental picture within us both as an object of contemplation in itself and as a mental picture of something else […]. Insofar as we consider it in relation to something else, e.g. as a likeness, it is also an aid to memory." (Aristotle, "De Memoria et Reminiscentia" [On Memory and Recollection], 4th century BC)

"For imagination is different from either perceiving or discursive thinking, though it is not found without sensation, or judgement without it. That this activity is not the same kind of thinking as judgement is obvious. For imagining lies within our own power whenever we wish (e.g. we can call up a picture, as in the practice of mnemonics by the use of mental images), but in forming opinions we are not free: we cannot escape the alternative of falsehood or truth." (Aristotle, "De Anima", cca. 350 BC)

"[Imagination is] that in virtue of which we say that an image occurs to us and not as we speak of it metaphorically."  (Aristotle, "De Anima" III, cca. 350 BC)

"Since it seems that there is nothing outside and separate in existence from sensible spatial magnitudes, the objects of thought are in the sensible forms, viz. both the abstract objects and all the states and affections of sensible things. Hence no one can learn or understand anything in the absence of sense, and when the mind is actively aware of anything it is necessarily aware of it along with an image; for images are like sensuous contents except in that they contain no matter. Imagination is different from assertion and denial; for what is true or false involves a synthesis of thoughts. In what will the primary thoughts differ from images? Must we not say that neither these nor even our other thoughts are images, though they necessarily involve them?" (Aristotle, "De Anima", cca. 350 BC)

"Thinking is different from perceiving and is held to be in part imagination, in part judgement: we must therefore first mark off the sphere of imagination and then speak of judgement. If then imagination is that in virtue of which an image arises for us, excluding metaphorical uses of the term, is it a single faculty or disposition relative to images, in virtue of which we discriminate and are either in error or not? The faculties in virtue of which we do this are sense, opinion, knowledge, thought." (Aristotle, "De Anima", cca. 350 BC)

"Imagination (VIKALPA) is a thought based on a mental image describable by words but not based on an object directly observable." (Patanjali, "Yoga Sutra" cca. 500 BC - 400 AD)

Previous Post <<||>> Next Post

25 January 2021

Kenji Ueno - Collected Quotes

"[...] a manifold is a set M on which 'nearness' is introduced (a topological space), and this nearness can be described at each point in M by using coordinates. It also requires that in an overlapping region, where two coordinate systems intersect, the coordinate transformation is given by differentiable transition functions." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"An essential difference between continuity and differentiability is whether numbers are involved or not. The concept of continuity is characterized by the qualitative property that nearby objects are mapped to nearby objects. However, the concept of differentiation is obtained by using the ratio of infinitesimal increments. Therefore, we see that differentiability essentially involves numbers." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"Analyticity is the property of a differentiable function y = f(x) that can be represented by the infinite series for all x near each point x0." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"By studying analytic functions using power series, the algebra of the Middle Ages was connected to infinite operations (various algebraic operations with infinite series). The relation of algebra with infinite operations was later merged with the newly developed differential and integral calculus. These developments gave impetus to early stages of the development of analysis. In a way, we can say that analyticity is the notion that first crossed the boundary from finite to infinite by passing from polynomials to infinite series. However, algebraic properties of polynomial functions still are strongly present in analytic functions." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"[…] continuity appears when we try to mathematically express continuously changing phenomena, and differentiability is the result of expressing smoothly changing phenomena."  (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"Continuous functions can change freely, while analytic functions are rigid. In this sense, we can say that continuous and analytic functions are antipodal." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"Continuous functions can move freely. Graphs of continuous functions can freely branch off at any place, whereas analytic functions coinciding in some neighborhood of a point P cannot branch outside of this neighborhood. Because of this property, continuous functions can mathematically represent wildly changing wind inside a typhoon or a gentle breeze." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"Differentiability of a function can be established by examining the behavior of the function in the immediate neighborhood of a single point a in its domain. Thus, all we need is coordinates in the vicinity of the point a. From this point of view, one might say that local coordinates have more essential qualities. However, if are not looking at individual surfaces, we cannot find a more general and universal notion than smoothness." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"[...] differentiation is performed by focusing on the behavior of a function near one point. A quantity obtained in this manner is essentially a local quantity. Is it possible that such local quantities can show us something very basic about global properties such as smoothness? Does there exist a place in mathematics which would enable us to study the relationship between local and global quantities?" (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"Even though there are no methods to represent each differentiable function by an 'equation', we can still investigate differentiable functions by various analytic methods. Because of this, we can say that differentiable functions have more mathematical reality than continuous functions." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"Here we have the following question: 'Which concept is closer to the concept of differentiability -continuity or analyticity?' The answer depends upon the point of view. Our point of view is that continuity appears when we try to mathematically express continuously changing phenomena, and differentiability is the result of expressing smoothly changing phenomena." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"If each change of a certain quantity results in a corresponding change of another quantity, we can say that there exists a functional relationship between those two quantities. Viewed in this manner, the idea of functions expands endlessly. The concept of functions is truly comprehensive, but while it is all encompassing, it is not fathomless; at least, not with respect to our current subject of manifolds. You might feel that linear functions or quadratic functions are far too specific and that you are sinking into the depths of the ocean called functions. However, you will be rescued from the ocean depths by understanding of the functions that are needed to describe manifolds. These functions are continuous, analytic, and differentiable functions." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"[...] if we consider a topological space instead of a plane, then the question of whether the coordinates axes in that space are curved or straight becomes meaningless. The way we choose coordinate systems is related to the way we observe the property of smoothness in a topological space." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"If we know when a sequence approaches a point or, as we say, converges to a point, we can define a continuous mapping from one metric space to another by using the property that a converging sequence is mapped to the corresponding converging sequence." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"In abstract mathematics, special attention is given to particular properties of numbers. Then those properties are taken in a very pure (and primitive) form. Those properties in pure form are then assigned to a given set. Therefore, by studying in details the internal mathematical structure of a set, we should be able to clarify the meaning of original properties of the objects. Likewise, in set theory, numbers disappear and only the concept of sets and characteristic properties of sets remain." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"In view of the developments of abstract mathematics, the first thing mathematicians studied was how to extract the property of 'nearness' from the set of numbers. If the property of nearness could be extracted using a few axioms, and if it was possible to associate the extracted property with a set, then the resulting set would provide an abstract scene to study 'nearness'." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"Intuitively speaking, a visual representation associated with the concept of continuity is the property that a near object is sent to a corresponding near object, that is, a convergent sequence is sent to a corresponding convergent sequence." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"It is commonly said that the study of manifolds is, in general, the study of the generalization of the concept of surfaces. To some extent, this is true. However, defining it that way can lead to overshadowing by 'figures' such as geometrical surfaces." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"[...] moving from the concept of continuity to differentiability, and then to analyticity, we are moving from weaker properties to stronger ones. Therefore, the relations between the corresponding properties of functions can be expressed as follows: {continuous functions} > {differentiate functions} > {analytic functions}." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"Similarly to the graphs of continuous functions, graphs of differentiable (smooth) functions which coincide in a neighborhood of a point P can branch off outside of the neighborhood. Because of this property, differentiable functions can represent smoothly changing natural phenomena." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"The best example to indicate the rigidity of analytic functions is a soap film (with little viscosity) on a wire frame (think of a bubble blower). The soap film, which is created by the surface tension, stretches across the wire frame and is known to have analyticity. Therefore, if we try to change a certain region of the film by tapping it with a stick, then the film loses analyticity and will immediately brake." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"[...] the only characteristic property that continuous functions have is that near objects are sent to corresponding near objects, that is, a convergent sequence is mapped to the corresponding convergent sequence. It is reasonable to say that we cannot expect to extract from that property neither numerical consequences, nor a method to extensively study continuity. On the contrary, analytic functions can be represented by equations (precisely speaking, by infinite series). Compared to analytic functions, continuous functions, in general, are difficult to represent explicitly, although they exist as a concept." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"The property of smoothness includes the property of continuity. The notion of a topological space was born from the development of abstract algebra as a universal notion for the property of continuity." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"To consider differentiable functions, we must introduce a coordinate system on the plane and thereby to concentrate on the world of numbers.[...] a continuous function defined on a plane can be differentiable or nondifferentiable depending on the choice of coordinates. [...] the choice of coordinates on the plane determines which functions among the continuous functions should be selected as differentiable functions." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"To describe the property of smoothness, differentiable functions should be specified first. To do so, coordinates need to be introduced on the topological space. Those coordinates can be local coordinates such as the ones used by Gauss. Once coordinates are introduced around a point a in a topological space, differentiable functions near the point a are distinguished from the continuous functions in the region near a. If different coordinates are chosen, then a different set of differentiable functions is distinguished. In other words, the choice of local coordinates determines the notion of smoothness in a topological space." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"When the absolute concept of coordinate systems introduced by Descartes shifted to the relative concept of coordinate systems introduced by Gauss, a clear differences between continuity and differentiability emerged."  (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"When we study the concept of continuity by itself, numbers are not necessary as long as you are dealing with objects which have the property of 'nearness' . Therefore, if we can introduce the notion of 'nearness' detached from numbers from a purely abstract point of view, then we can discuss topics related to continuity based upon this notion. This approach enables us to become familiar with the science we call mathematics." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

20 December 2020

On Linearity I

"Today it is no longer questioned that the principles of the analysts are the more far-reaching. Indeed, the synthesists lack two things in order to engage in a general theory of algebraic configurations: these are on the one hand a definition of imaginary elements, on the other an interpretation of general algebraic concepts. Both of these have subsequently been developed in synthetic form, but to do this the essential principle of synthetic geometry had to be set aside. This principle which manifests itself so brilliantly in the theory of linear forms and the forms of the second degree, is the possibility of immediate proof by means of visualized constructions." (Felix Klein, "Riemannsche Flächen", 1906)

"The conception of tensors is possible owing to the circumstance that the transition from one co-ordinate system to another expresses itself as a linear transformation in the differentials. One here uses the exceedingly fruitful mathematical device of making a problem 'linear' by reverting to infinitely small quantities." (Hermann Weyl, "Space - Time - Matter", 1922)

"Any organism must be treated as-a-whole; in other words, that an organism is not an algebraic sum, a linear function of its elements, but always more than that. It is seemingly little realized, at present, that this simple and innocent-looking statement involves a full structural revision of our language […]" (Alfred Korzybski, "Science and Sanity", 1933)

"Beauty had been born, not, as we so often conceive it nowadays, as an ideal of humanity, but as measure, as the reduction of the chaos of appearances to the precision of linear symbols. Symmetry, balance, harmonic division, mated and mensurated intervals - such were its abstract characteristics." (Herbert E Read, "Icon and Idea", 1955)

"We've seen that even in the simplest situations nonlinearities can interfere with a linear approach to aggregates. That point holds in general: nonlinear interactions almost always make the behavior of the aggregate more complicated than would be predicted by summing or averaging." (Lewis Mumford, "The Myth of the Machine" Vol 1, 1967)

"It is sometimes said that the great discovery of the nineteenth century was that the equations of nature were linear, and the great discovery of the twentieth century is that they are not." (Thomas W Körner, "Fourier Analysis", 1988)

"A major clash between economics and ecology derives from the fact that nature is cyclical, whereas our industrial systems are linear. Our businesses take resources, transform them into products plus waste, and sell the products to consumers, who discard more waste […]" (Fritjof Capra, "The Web of Life", 1996)

"The first idea is that human progress is exponential (that is, it expands by repeatedly multiplying by a constant) rather than linear (that is, expanding by repeatedly adding a constant). Linear versus exponential: Linear growth is steady; exponential growth becomes explosive." (Ray Kurzweil, "The Singularity is Near", 2005)

"Without precise predictability, control is impotent and almost meaningless. In other words, the lesser the predictability, the harder the entity or system is to control, and vice versa. If our universe actually operated on linear causality, with no surprises, uncertainty, or abrupt changes, all future events would be absolutely predictable in a sort of waveless orderliness." (Lawrence K Samuels, "Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013)

"There is no linear additive process that, if all the parts are taken together, can be understood to create the total system that occurs at the moment of self-organization; it is not a quantity that comes into being. It is not predictable in its shape or subsequent behavior or its subsequent qualities. There is a nonlinear quality that comes into being at the moment of synchronicity." (Stephen H Buhner, "Plant Intelligence and the Imaginal Realm: Beyond the Doors of Perception into the Dreaming of Earth", 2014)

13 December 2020

Complexity vs Mathematics II

"[Mathematics] guides our minds in an orderly way, and furnishes us simple and rational principles by means of which ambiguities are clarified, disorder is converted into order, and complexities are analyzed into their component parts." (Johann B Mencken, "The Charlatanry of the Learned", 1715)

"These sciences, Geometry, Theoretical Arithmetic and Algebra, have no principles besides definitions and axioms, and no process of proof but deduction; this process, however, assuming a most remarkable character; and exhibiting a combination of simplicity and complexity, of rigour and generality, quite unparalleled in other subjects." (William Whewell, "The Philosophy of the Inductive Sciences", 1840)

"The value of mathematical instruction as a preparation for those more difficult investigations, consists in the applicability not of its doctrines but of its methods. Mathematics will ever remain the past perfect type of the deductive method in general; and the applications of mathematics to the simpler branches of physics furnish the only school in which philosophers can effectually learn the most difficult and important of their art, the employment of the laws of simpler phenomena for explaining and predicting those of the more complex." (John S Mill, "System of Logic", 1843)

"It is certainly true that all physical phenomena are subject to strictly mathematical conditions, and mathematical processes are unassailable in themselves. The trouble arises from the data employed. Most phenomena are so highly complex that one can never be quite sure that he is dealing with all the factors until the experiment proves it. So that experiment is rather the criterion of mathematical conclusions and must lead the way." (Amos E Dolbear, "Matter, Ether, Motion", 1894)

"Mathematics, the science of the ideal, becomes the means of investigating, understanding and making known the world of the real. The complex is expressed in terms of the simple. From one point of view mathematics may be defined as the science of successive substitutions of simpler concepts for more complex [...]" (William F White, "A Scrap-book of Elementary Mathematics", 1908)

"A great department of thought must have its own inner life, however transcendent may be the importance of its relations to the outside. No department of science, least of all one requiring so high a degree of mental concentration as Mathematics, can be developed entirely, or even mainly, with a view to applications outside its own range. The increased complexity and specialisation of all branches of knowledge makes it true in the present, however it may have been in former times, that important advances in such a department as Mathematics can be expected only from men who are interested in the subject for its own sake, and who, whilst keeping an open mind for suggestions from outside, allow their thought to range freely in those lines of advance which are indicated by the present state of their subject, untrammelled by any preoccupation as to  applications to other departments of science." (Ernst W Hobson, Nature Vol. 84, [address] 1910)

"Elegance may produce the feeling of the unforeseen by the unexpected meeting of objects we are not accustomed to bring together; there again it is fruitful, since it thus unveils for us kinships before unrecognized. It is fruitful even when it results only from the contrast between the simplicity of the means and the complexity of the problem set; it makes us then think of the reason for this contrast and very often makes us see that chance is not the reason; that it is to be found in some unexpected law. In a word, the feeling of  mathematical elegance is only the satisfaction due to any adaptation of the solution to the needs of our mind, and it is because of this very adaptation that this solution can be for us an instrument. Consequently this esthetic satisfaction is bound up with the economy of thought." (Jules Henri Poincaré, "The Future of Mathematics", Monist Vol. 20, 1910)

"The mathematical laws presuppose a very complex elaboration. They are not known exclusively either a priori or a posteriori, but are a creation of the mind; and this creation is not an arbitrary one, but, owing to the mind’s resources, takes place with reference to experience and in view of it. Sometimes the mind starts with intuitions which it freely creates; sometimes, by a process of elimination, it gathers up the axioms it regards as most suitable for producing a harmonious development, one that is both simple and fertile. The mathematics is a voluntary and intelligent adaptation of thought to things, it represents the forms that will allow of qualitative diversity being surmounted, the moulds into which reality must enter in order to become as intelligible as possible." (Émile Boutroux, "Natural Law in Science and Philosophy", 1914)

"No equation, however impressive and complex, can arrive at the truth if the initial assumptions are incorrect." (Arthur C Clarke, "Profiles of the Future: An Inquiry into the Limits of the Possible", 1973)

"Economists are all too often preoccupied with petty mathematical problems of interest only to themselves. This obsession with mathematics is an easy way of acquiring the appearance of scientificity without having to answer the far more complex questions posed by the world we live in." (Thomas Piketty, Capital in the Twenty-First Century, 2013)

02 December 2020

On Symbols (-1799)

"Natural justice is a symbol or expression of usefulness, to prevent one person from harming or being harmed by another."  (Epicurus, "Sovereign Maxims"

"All teems with symbol; the wise man is the man who in any one thing can read another." Plotinus, The Enneads c. 250)

"Letters are signs of things, symbols of words, whose power is so great that without a voice they speak to us the words of the absent; for they introduce words by the eye, not by the ear." (Isidore of Seville, "Etymologiae", cca. 800-625)

"The Syllogism consists of propositions, propositions consist of words, words are symbols of notions. Therefore if the notions themselves (which is the root of the matter) are confused and over-hastily abstracted from the facts, there can be no firmness in the superstructure. Our only hope therefore lies in a true induction." (Francis Bacon, The New Organon, 1620)

"Nature's great book is written in mathematical symbols." (Galileo Galilei, "The Assayer", 1623)

"It is obvious that if we could find characters or signs suited for expressing all our thoughts as clearly and as exactly as arithmetic expresses numbers or geometry expresses lines, we could do in all matters, insofar as they are subject to reasoning, all that we can do in arithmetic and geometry." (Gottfried W Leibniz, 1677)

"In symbols one observes an advantage in discovery which is greatest when they express the exact nature of a thing briefly and, as it were, picture it; then indeed the labor of thought is wonderfully diminished." (Gottfried W Leibniz, [letter to Ehrenfried W von Tschirnhaus] cca. 1680)

"Algebra is a general Method of Computation by certain signs and symbols which have been contrived for the Purpose, and found convenient." (Colin Maclaurin, "A Treatise of Algebra", 1748)

As a general rule - never substitute the symbol for the thing signified, unless it is impossible to show the thing itself; for the child's attention is so taken up with the symbol that he will forget what it signifies." (Jean Jacques Rousseau, "Emile, or On Education", 1762) 

On Symbols (1870-1879)

"Ideas are substitutions which require a secondary process when what is symbolized by them is translated into the images and experiences it replaces; and this secondary process is frequently not performed at all, generally only performed to a very small extent. Let anyone closely examine what has passed in his mind when he has constructed a chain of reasoning, and he will be surprised at the fewness and faintness of the images which have accompanied the ideas." (George H Lewes "Problems of Life and Mind", 1873)

"Mathematicians may flatter themselves that they possess new ideas which mere human language is yet unable to express. Let them make the effort to express these ideas in appropriate words without the aid of symbols, and if they succeed they will not only lay us laymen under a lasting obligation, but we venture to say, they will find themselves very much enlightened during the process, and will even be doubtful whether the ideas as expressed in symbols had ever quite found their way out of the equations of their minds." (James C Maxwell Scottish, "Thomson & Tait's Natural Philosophy", Nature Vol. 7, 1873) 

"The invention of a new symbol is a step in the advancement of civilisation. Why were the Greeks, in spite of their penetrating intelligence and their passionate pursuit of Science, unable to carry Mathematics farther than they did? and why, having formed the conception of the Method of Exhaustions, did they stop short of that of the Differential Calculus? It was because they had not the requisite symbols as means of expression. They had no Algebra. Nor was the place of this supplied by any other symbolical language sufficiently general and flexible; so that they were without the logical instruments necessary to construct the great instrument of the Calculus." (George H Lewes "Problems of Life and Mind", 1873)

"The leading characteristic of algebra is that of operation on relations. This also is the leading characteristic of Thought. Algebra cannot exist without values, nor Thought without Feelings. The operations are so many blank forms till the values are assigned. Words are vacant sounds, ideas are blank forms, unless they symbolize images and sensations which are their values. Nevertheless it is rigorously true, and of the greatest importance, that analysts carry on very extensive operations with blank forms, never pausing to supply the symbols with values until the calculation is completed; and ordinary men, no less than philosophers, carry on long trains of thought without pausing to translate their ideas (words) into images." (George H Lewes "Problems of Life and Mind", 1873)

"The rules of Arithmetic operate in Algebra; the logical operations supposed to be peculiar to Ideation operate in Sensation, There is but one Calculus, but one Logic; though for convenience we divide the one into Arithmetic the calculus of values, and Algebra the calculus of relations; the other into the Logic of Feeling and the Logic of Signs." (George H Lewes "Problems of Life and Mind", 1873)

"Thought is symbolical of Sensation as Algebra is of Arithmetic, and because it is symbolical, is very unlike what it symbolises. For one thing, sensations are always positive; in this resembling arithmetical quantities. A negative sensation is no more possible than a negative number. But ideas, like algebraic quantities, may be either positive or negative. However paradoxical the square of a negative quantity, the square root of an unknown quantity, nay, even in imaginary quantity, the student of Algebra finds these paradoxes to be valid operations. And the student of Philosophy finds analogous paradoxes in operations impossible in the sphere of Sense. Thus although it is impossible to feel non-existence, it is possible to think it; although it is impossible to frame an image of Infinity, we can, and do, form the idea, and reason on it with precision." (George H Lewes "Problems of Life and Mind", 1873)

"With Algebra we enter a new sphere, that of symbolical quantities; here letters are symbols of any values we please; all we deal with in them is the relations of equality which the letters symbolise. Although the values are changeable, jet, once assigned, they must remain fixed throughout the operation. Illogical reasoning, in philosophic as in ordinary minds, is not due to any irregularity in the normal operation, but to a departure from the values assigned." (George H Lewes "Problems of Life and Mind", 1873)

"The most striking characteristic of the written language of algebra and of the higher forms of the calculus is the sharpness of definition, by which we are enabled to reason upon the symbols by the mere laws of verbal logic, discharging our minds entirely of the meaning of the symbols, until we have reached a stage of the process where we desire to interpret our results. The ability to attend to the symbols, and to perform the verbal, visible changes in the position of them permitted by the logical rules of the science, without allowing the mind to be perplexed with the meaning of the symbols until the result is reached which you wish to interpret, is a fundamental part of what is called analytical power. Many students find themselves perplexed by a perpetual attempt to interpret not only the result, but each step of the process. They thus lose much of the benefit of the labor-saving machinery of the calculus and are, indeed, frequently incapacitated for using it." (Thomas Hill, "Uses of Mathesis", Bibliotheca Sacra Vol. 32 (127), 1875)

"Some definite interpretation of a linear algebra would, at first sight, appear indispensable to its successful application. But on the contrary, it is a singular fact, and one quite consonant with the principles of sound logic, that its first and general use is mostly to be expected from its want of significance. The interpretation is a trammel to the use. Symbols are essential to comprehensive argument." (Benjamin Peirce, "On the Uses and Transformations of Linear Algebra", 1875)

"The strongest use of the symbol is to be found in its magical power of doubling the actual universe, and placing by its side an ideal universe, its exact counterpart, with which it can be compared and contrasted, and, by means of curiously connecting fibres, form with it an organic whole, from which modern analysis has developed her surpassing geometry." (Benjamin Peirce, "On the Uses and Transformations of Linear Algebra", 1875)

"When the formulas admit of intelligible interpretation, they are accessions to knowledge; but independently of their interpretation they are invaluable as symbolical expressions of thought. But the most noted instance is the symbol called the impossible or imaginary, known also as the square root of minus one, and which, from a shadow of meaning attached to it, may be more definitely distinguished as the symbol of semi-inversion. This symbol is restricted to a precise signification as the representative of perpendicularity in quaternions, and this wonderful algebra of space is intimately dependent upon the special use of the symbol for its symmetry, elegance, and power."  (Benjamin Peirce, "On the Uses and Transformations of Linear Algebra", 1875)

On Symbols (1890-1899)

"Judged by the only standards which are admissible in a pure doctrine of numbers i is imaginary in the same sense as the negative, the fraction, and the irrational, but in no other sense; all are alike mere symbols devised for the sake of representing the results of operations even when these results are not numbers (positive integers)." (Henry B Fine, "The Number-System of Algebra", 1890)

"The mathematician, carried along on his flood of symbols, dealing apparently with purely formal truths, may still reach results of endless importance for our description of the physical universe." (Karl Pearson, “The Grammar of Science”, 1892)

"The mechanism of thought consists in combinations, separations, and recombinations of representative images or symbols […] the object of thought is adaptation to environment." (Paul Carus, “Le probeme de la conscience du moi", 1893)

"At the basis of our Symbolic Logic, however represented, whether by words by letters or by diagrams, we shall always find the same state of things. What we ultimately have to do is to break up the entire field before us into a definite number of classes or compartments which are mutually exclusive and collectively exhaustive." (John Venn, "Symbolic Logic" 2nd Ed., 1894)

"The best way of introducing this question will be to enquire a little more strictly whether it is really classes that we thus represent, or merely compartments into which classes may be put? […] The most accurate answer is that our diagrammatic subdivisions, or for that matter our symbols generally, stand for compartments and not for classes. We may doubtless regard them as representing the latter, but if we do so we should never fail to keep in mind the proviso, 'if there be such things in existence'. And when this condition is insisted upon, it seems as if we expressed our meaning best by saying that what our symbols stand for are compartments which may or may not happen to be occupied." (John Venn, "Symbolic Logic" 2nd Ed., 1894)

“We form ourselves images or symbols of external objects; and the form which we give them is such that the necessary consequents of the images in thought are always the images of the necessary consequents in nature of the things pictured." (Heinrich Hertz, 1894)

"Art is a human activity consisting in this, that one consciously, by means of certain external symbols, conveys to others the feelings one has experienced, whereby people so infected by these feelings, also experience them." (Leo Tolstoy, "What is Art?", 1897)

"The elements of plane geometry should precede algebra for every reason known to sound educational theory. It is more fundamental, it is more concrete, and it deals with things and their relations rather than with symbols." (Nicholas M Butler, "The Meaning of Education, and Other Essays and Addresses", 1898)


Related Posts Plugin for WordPress, Blogger...

On Leonhard Euler

"I have been able to solve a few problems of mathematical physics on which the greatest mathematicians since Euler have struggled in va...