Showing posts with label representation. Show all posts
Showing posts with label representation. Show all posts

28 June 2025

On Idealization: Representation

"We may be thinking out a chain of reasoning in abstract Geometry, but if we draw a figure, as we usually must do in order to fix our ideas and prevent our attention from wandering owing to the difficulty of keeping a long chain of syllogisms in our minds, it is excusable if we are apt to forget that we are not in reality reasoning about the objects in the figure, but about objects which ore their idealizations, and of which the objects in the figure are only an imperfect representation. Even if we only visualize, we see the images of more or less gross physical objects, in which various qualities irrelevant for our specific purpose are not entirely absent, and which are at best only approximate images of those objects about which we are reasoning." (Ernest W Hobson, "Squaring the Circle", 1913)

"We realize, however, that all scientific laws merely represent abstractions and idealizations expressing certain aspects of reality. Every science means a schematized picture of reality, in the sense that a certain conceptual construct is unequivocally related to certain features of order in reality […]" (Ludwig von Bertalanffy, "General System Theory", 1968)

"For the mathematician, the physical way of thinking is merely the starting point in a process of abstraction or idealization. Instead of being a dot on a piece of paper or a particle of dust suspended in space, a point becomes, in the mathematician's ideal way of thinking, a set of numbers or coordinates. In applied mathematics we must go much further with this process because the physical problems under consideration are more complex. We first view a phenomenon in the physical way, of course, but we must then go through a process of idealization to arrive at a more abstract representation of the phenomenon which will be amenable to mathematical analysis." (Peter Lancaster, "Mathematics: Models of the Real World", 1976)

"[…] it does not seem helpful just to say that all models are wrong. The very word model implies simplification and idealization. The idea that complex physical, biological or sociological systems can be exactly described by a few formulae is patently absurd. The construction of idealized representations that capture important stable aspects of such systems is, however, a vital part of general scientific analysis and statistical models, especially substantive ones, do not seem essentially different from other kinds of model." (Sir David Cox, "Comment on ‘Model uncertainty, data mining and statistical inference’", Journal of the Royal Statistical Society, Series A 158, 1995)

"Through modeling, scientists manipulate symbols with meanings to represent an environment with structure. Such manipulations take place to fulfill a human need, solve a problem, or create a product. When constructing a model, one works in the cognitive space of ideas. Models are used to encapsulate, highlight, replicate or represent patterns of events and the structures of things. Of course, no model provides an exact duplication of the subject matter being modeled. Details are hidden, features are skewed, and certain properties are emphasized. Models are abstract and idealized. As an abstraction, a model omits some features of the subject matter, while retaining only significant properties. As an idealization, a model depicts a subject's properties in a more perfect form." (Daniel Rothbart [Ed.], "Modeling: Gateway to the Unknown", 2004)

"The intent of these representations is to capture the relevant characteristics of reality, which may overlap but are not identical in each case. The engineer has to ascertain what those are, and then incorporate appropriate assumptions and simplifications accordingly. Two common strategies are abstraction, which involves neglecting certain aspects of reality in order to gain a better understanding of the remaining aspects; and idealization, which involves replacing a complicated and/or complex aspect of reality with a simplified version." (Jon A Schmidt, "Representation and Reality", Structure [magazine], 2015)

“A mathematical model is a mathematical description (often by means of a function or an equation) of a real-world phenomenon such as the size of a population, the demand for a product, the speed of a falling object, the concentration of a product in a chemical reaction, the life expectancy of a person at birth, or the cost of emission reductions. The purpose of the model is to understand the phenomenon and perhaps to make predictions about future behavior. [...] A mathematical model is never a completely accurate representation of a physical situation - it is an idealization." (James Stewart, “Calculus: Early Transcedentals” 8th Ed., 2016)

29 January 2022

On Representation (1975-1989)

"[…] there is an irreducible difference between the world and our experience of it. We as human beings do not operate directly on the world. Each of us creates a representation of the world in which we live - that is, we create a map or model which we use to generate our behavior. Our representation of the world determines to a large degree what our experience of the world will be, how we will perceive the world, what choices we will see available to us as we live in the world." (Richard Bandler & John Grinder, "The Structure of Magic", 1975)

"The primitives of a representation are the most elementary units of shape information available in a representation." (David Marr, "Representation and recognition of the spatial organization of three-dimensional shapes", 1978) 

"A mental image occurs when a representation of the type created during the initial phases of perception is present but the stimulus is not actually being perceived; such representations preserve the perceptible properties of the stimulus and ultimately give rise to the subjective experience of perception." (Stephen M Kosslyn, "Image and Mind", 1980)

"Whenever I have talked about mental models, audiences have readily grasped that a layout of concrete objects can be represented by an internal spatial array, that a syllogism can be represented by a model of individuals and identities between them, and that a physical process can be represented by a three-dimensional dynamic model. Many people, however, have been puzzled by the representation of abstract discourse; they cannot understand how terms denoting abstract entities, properties or relations can be similarly encoded, and therefore they argue that these terms can have only 'verbal' or propositional representations." (Philip Johnson-Laird,"Mental Models: Towards a Cognitive Science of Language, Inference and Consciousness", 1983)

"The mapping from linguistic inputs to mental models is not a one-one mapping. So semantic properties of sentences may not be recoverable from a mental model. Reading or listening is typically for content not for form. People want to know what is being said to them, not how it is being said. [...] A mental model is a representation of the content of a text that need bear no resemblance to any of the text's linguistic representations. Its structure is similar to the situation described by the text." (Alan Granham, "Mental Models as Representations of Discourse and Text", 1987)

"When we focus consciously on an object - and create a mental image for eexample- it's not because the brain pattern is a copy or neural representation of the perceived object, but because the brain experiences a special kind of interaction with that object, preparing the brain to deal with it." (Roger W Sperry, "New Mindset on Consciousness", Sunrise magazine, 1987/1988)

“[…] a mental model is a mapping from a domain into a mental representation which contains the main characteristics of the domain; a model can be ‘run’ to generate explanations and expectations with respect to potential states. Mental models have been proposed in particular as the kind of knowledge structures that people use to understand a specific domain […]” (Helmut Jungermann, Holger Schütz & Manfred Thuering, “Mental models in risk assessment: Informing people about drugs”, Risk Analysis 8 (1), 1988)

Previous Post <<||>> Next Post

On Representation (-1899)

"Sometimes a thing is perceived [via sense-perception] when it is observed; then it is imagined, when it is absent [in reality] through the representation of its form inside, Sense-perception grasps [the concept] insofar as it is buried in these accidents that cling to it because of the matter out of which it is made without abstracting it from [matter], and it grasps it only by means of a connection through position [ that exists] between its perception and its matter. It is for this reason that the form of [the thing] is not represented in the external sense when [sensation] ceases. As to the internal [faculty of] imagination, it imagines [the concept] together with these accidents, without being able to entirely abstract it from them. Still, [imagination] abstracts it from the afore-mentioned connection [through position] on which sense-perception depends, so that [imagination] represents the form [of the thing] despite the absence of the form's [outside] carrier." (Avicenna Latinus [Ibn Sina], "Pointer and Reminders", cca. 1030)

"Our knowledge springs from two fundamental sources of the mind; the first is the capacity of receiving representations (receptivity for impressions), the second is the power of knowing an object through these representations (spontaneity [in the production] of concepts)." (Immanuel Kant, "Critique of Pure Reason", 1781)

“Hence all these theories lead to the conception of a medium in which the propagation takes place, and if we admit this medium as an hypothesis, I think it ought to occupy a prominent place in our investigations, and that we ought to endeavour to construct a mental representation of all the details of its action, and this has been my constant aim in this treatise.” (James C Maxwell, “Treatise on Electricity and Magnetism” Vol. II, 1873)

"We produce these representations in and from ourselves with the same necessity with which the spider spins. If we are forced to comprehend all things only under these forms, then it ceases to be amazing that in all things we actually comprehend nothing but these forms. For they must all bear within themselves the laws of number, and it is precisely number which is most astonishing in things. All that conformity to law, which impresses us so much in the movement of the stars and in chemical processes, coincides at bottom with those properties which we bring to things. Thus it is we who impress ourselves in this way." (Friedrich Nietzsche, "On Truth and Lie in an Extra-Moral Sense", 1873)

"A person who knew the world only through the theatre, if brought behind the scenes and permitted to view the mechanism of the stage’s action, might possibly believe that the real world also was in need of a machine-room, and that if this were once thoroughly explored, we should know all. Similarly, we, too, should beware lest the intellectual machinery, employed in the representation of the world on the stage of thought, be regarded as the basis of the real world." (Ernst Mach, "The Science of Mechanics; a Critical and Historical Account of Its Development", 1893) 

"The steps to scientific as well as other knowledge consist in a series of logical fictions which are as legitimate as they are indispensable in the operations of thought, but whose relations to the phenomena whereof they are the partial and not unfrequently merely symbolical representations must never be lost sight of." (John Stallo, "The Concepts and Theories of Modern Physics", 1884) 

"The theory most prevalent among teachers is that mathematics affords the best training for the reasoning powers; […] The modem, and to my mind true, theory is that mathematics is the abstract form of the natural sciences; and that it is valuable as a training of the reasoning powers, not because it is abstract, but because it is a representation of actual things." (Truman H Safford, "Mathematical Teaching and Its Modern Methods", 1886)

Previous Post <<||>> Next Post

On Representation (1900-1949)

 "The sole purpose of physical theory is to provide a representation and classification of experimental laws; the only test permitting us to judge a physical theory and pronounce it good or bad is the comparison between the consequences of this theory and the experimental laws it has to represent and classify."  (Pierre-Maurice-Marie Duhem, “The Aim and Structure of Physical Theory”, 1908)

“A geometrical-physical theory as such is incapable of being directly pictured, being merely a system of concepts. But these concepts serve the purpose of bringing a multiplicity of real or imaginary sensory experiences into connection in the mind. To ‘visualise’ a theory, or bring it home to one's mind, therefore means to give a representation to that abundance of experiences for which the theory supplies the schematic arrangement” (Albert Einstein, “Geometry and Experience”, 1921)

"We wish to obtain a representation of phenomena and form an image of them in our minds. Till now, we have always attempted to form these images by means of the ordinary notions of time and space. These notions are perhaps innate; in any case they have been developed by our daily observations. For me, these notions are clear, and I confess that I am unable to gain any idea of physics without them. […] I would like to retain this ideal of other days and describe everything that occurs in this world in terms of clear pictures." (Hendrik A Lorentz, [Fifth Solvay Conference] 1927)

“It can scarcely be denied that the supreme goal of all theory is to make the irreducible basic elements as simple and as few as possible without having to surrender the adequate representation of a single datum of experience.” (Albert Einstein, [lecture] 1933)

"A scientific observation is always a committed observation. It confirms or denies one’s preconceptions, one’s first ideas, one’s plan of observation. It shows by demonstration. It structures the phenomenon. It transcends what is close at hand. It reconstructs the real after having reconstructed its representation." (Gaston Bachelard, "The New Scientific Spirit", 1934)

"Although we can never devise a pictorial representation which shall be both true to nature and intelligible to our minds, we may still be able to make partial aspects of the truth comprehensible through pictorial representations or parables. As the whole truth does not admit of intelligible representation, every such pictorial representation or parable must fail somewhere. The physicist of the last generation was continually making pictorial representations and parables, and also making the mistake of treating the half-truths of pictorial representations and parables as literal truths.” (James H Jeans, “Physics and Philosophy” 3rd Ed., 1943)

"A material model is the representation of a complex system by a system which is assumed simpler and which is also assumed to have some properties similar to those selected for study in the original complex system. A formal model is a symbolic assertion in logical terms of an idealised relatively simple situation sharing the structural properties of the original factual system." (Arturo Rosenblueth & Norbert Wiener, "The Role of Models in Science", Philosophy of Science Vol. 12 (4), 1945)

“Representation of the world, like the world itself, is the work of men; they describe it from their own point of view, which they confuse with absolute truth.” (Simone de Beauvoir, “The Second Sex”, 1949)

Previous Post <<||>> Next Post

On Representation (1950-1974)

"We have thus assigned to pure reason and experience their places in a theoretical system of physics. The structure of the system is the work of reason: the empirical contents and their mutual relations must find their representation in the conclusions of the theory. In the possibility of such a representation lie the sole value and justification of the whole system, and especially of the concepts and fundamental principles which underlie it. Apart from that, these latter are free inventions of human intellect, which cannot be justified either by the nature of that intellect or in any other fashion a priori." (Albert Einstein, "Ideas and Opinions", 1954)

"[a pictorial representation] is not a faithful record of a visual experience, but the faithful construction of a relational model […] Such a model can be constructed to any required degree of accuracy . What is decisive here is clearly the word 'required'. The form of a representation cannot be divorced from its purpose and the requirements of the society in which the given visual language gains currency." (Ernst H Gombrich," Art and illusion", 1960)

"A more problematic example is the parallel between the increasingly abstract and insubstantial picture of the physical universe which modern physics has given us and the popularity of abstract and non-representational forms of art and poetry. In each case the representation of reality is increasingly removed from the picture which is immediately presented to us by our senses." (Harvey Brooks, "Scientific Concepts and Cultural Change", 1965)

"A model is a qualitative or quantitative representation of a process or endeavor that shows the effects of those factors which are significant for the purposes being considered. A model may be pictorial, descriptive, qualitative, or generally approximate in nature; or it may be mathematical and quantitative in nature and reasonably precise. It is important that effective means for modeling be understood such as analog, stochastic, procedural, scheduling, flow chart, schematic, and block diagrams." (Harold Chestnut, "Systems Engineering Tools", 1965)

"As is used in connection with systems engineering, a model is a qualitative or quantitative representation of a process or endeavor that shows the effects of those factors which are significant for the purposes being considered. Modeling is the process of making a model. Although the model may not represent the actual phenomenon in all respects, it does describe the essential inputs, outputs, and internal characteristics, as well as provide an indication of environmental conditions similar to those of actual equipment." (Harold Chestnut, "Systems Engineering Tools", 1965)

"We say the map is different from the territory. But what is the territory? Operationally, somebody went out with a retina or a measuring stick and made representations which were then put on paper. What is on the paper map is a representation of what was in the retinal representation of the man who made the map; and as you push the question back, what you find is an infinite regress, an infinite series of maps. The territory never gets in at all. […] Always, the process of representation will filter it out so that the mental world is only maps of maps, ad infinitum." (Gregory Bateson, "Steps to an Ecology of Mind", 1972)

Previous Post <<||>> Next Post

11 October 2021

On Problem Solving XIV: Representation I

"This diagrammatic method has, however, serious inconveniences as a method for solving logical problems. It does not show how the data are exhibited by cancelling certain constituents, nor does it show how to combine the remaining constituents so as to obtain the consequences sought. In short, it serves only to exhibit one single step in the argument, namely the equation of the problem; it dispenses neither with the previous steps, i.e., 'throwing of the problem into an equation' and the transformation of the premises, nor with the subsequent steps, i.e., the combinations that lead to the various consequences. Hence it is of very little use, inasmuch as the constituents can be represented by algebraic symbols quite as well as by plane regions, and are much easier to deal with in this form." (Louis Couturat, "The Algebra of Logic", 1914)

"Graphics is the visual means of resolving logical problems." (Jacques Bertin, "Graphics and Graphic Information Processing", 2011)

"A mental model is a knowledge structure that incorporates both declarative knowledge (e.g., device models) and procedural knowledge (e.g., procedures for determining distributions of voltages within a circuit), and a control structure that determines how the procedural and declarative knowledge are used in solving problems (e.g., mentally simulating the behavior of a circuit)." (Barbara Y White & John R Frederiksen, "Causal Model Progressions as a Foundation for Intelligent Learning Environments", Artificial Intelligence 42, 1990)

"An important symptom of an emerging understanding is the capacity to represent a problem in a number of different ways and to approach its solution from varied vantage points; a single, rigid representation is unlikely to suffice." (Howard Gardner, “The Unschooled Mind”, 1991)

"The term mental model refers to knowledge structures utilized in the solving of problems. Mental models are causal and thus may be functionally defined in the sense that they allow a problem solver to engage in description, explanation, and prediction. Mental models may also be defined in a structural sense as consisting of objects, states that those objects exist in, and processes that are responsible for those objects’ changing states." (Robert Hafner & Jim Stewart, "Revising Explanatory Models to Accommodate Anomalous Genetic Phenomena: Problem Solving in the ‘Context of Discovery’", Science Education 79 (2), 1995)

"The purpose of a conceptual model is to provide a vocabulary of terms and concepts that can be used to describe problems and/or solutions of design. It is not the purpose of a model to address specific problems, and even less to propose solutions for them. Drawing an analogy with linguistics, a conceptual model is analogous to a language, while design patterns are analogous to rhetorical figures, which are predefined templates of language usages, suited particularly to specific problems." (Peter P Chen [Ed.], "Advances in Conceptual Modeling", 1999)

"What it means for a mental model to be a structural analog is that it embodies a representation of the spatial and temporal relations among, and the causal structures connecting the events and entities depicted and whatever other information that is relevant to the problem-solving talks. […] The essential points are that a mental model can be nonlinguistic in form and the mental mechanisms are such that they can satisfy the model-building and simulative constraints necessary for the activity of mental modeling." (Nancy J Nersessian, "Model-based reasoning in conceptual change", 1999)

"A model is an imitation of reality and a mathematical model is a particular form of representation. We should never forget this and get so distracted by the model that we forget the real application which is driving the modelling. In the process of model building we are translating our real world problem into an equivalent mathematical problem which we solve and then attempt to interpret. We do this to gain insight into the original real world situation or to use the model for control, optimization or possibly safety studies." (Ian T Cameron & Katalin Hangos, "Process Modelling and Model Analysis", 2001)

"Understanding a problem means building some kind of representation of the problem in one's mind, based on what the situation is or what the problem statement says and on one's prior knowledge. It is then possible to reason about the problem within this mental representation. Generating a useful mental representation is therefore the most important single factor for successful problem solving." (S Ian Robertson, "Problem Solving", 2001)

"The key role of representation in thinking is often downplayed because of an ideal of rationality that dictates that whenever two statements are mathematically or logically the same, representing them in different forms should not matter. Evidence that it does matter is regarded as a sign of human irrationality. This view ignores the fact that finding a good representation is an indispensable part of problem solving and that playing with different representations is a tool of creative thinking." (Gerd Gigerenzer, "Calculated Risks: How to know when numbers deceive you", 2002)

"Mathematical modeling is as much ‘art’ as ‘science’: it requires the practitioner to (i) identify a so-called ‘real world’ problem (whatever the context may be); (ii) formulate it in mathematical terms (the ‘word problem’ so beloved of undergraduates); (iii) solve the problem thus formulated (if possible; perhaps approximate solutions will suffice, especially if the complete problem is intractable); and (iv) interpret the solution in the context of the original problem." (John A Adam, "Mathematics in Nature", 2003)

"What is a mathematical model? One basic answer is that it is the formulation in mathematical terms of the assumptions and their consequences believed to underlie a particular ‘real world’ problem. The aim of mathematical modeling is the practical application of mathematics to help unravel the underlying mechanisms involved in, for example, economic, physical, biological, or other systems and processes." (John A Adam, "Mathematics in Nature", 2003)

Previous <<||>> Next

17 June 2021

On Knowledge (1775-1799)

"Cultivate that kind of knowledge which enables us to discover for ourselves in case of need that which others have to read or be told of." (Georg C Lichtenberg, Notebook D, 1773-1775)

"Knowledge is of two kinds. We know a subject ourselves, or we know where we can find information upon it." (Samuel Johnson, 1775)

"Our knowledge springs from two fundamental sources of the mind; the first is the capacity of receiving representations (receptivity for impressions), the second is the power of knowing an object through these representations (spontaneity [in the production] of concepts)." (Immanuel Kant, "Critique of Pure Reason", 1781)

"Philosophical knowledge is the knowledge gained by reason from concepts; mathematical knowledge is the knowledge gained by reason from the construction of concepts." (Immanuel Kant, "Critique of Pure Reason", 1781)

"Thoughts without content are empty, intuitions without concepts are blind. The understanding can intuit nothing, the senses can think nothing. Only through their unison can knowledge arise." (Immanuel Kant, "Critique of Pure Reason", 1781)

"The word ‘chance’ then expresses only our ignorance of the causes of the phenomena that we observe to occur and to succeed one another in no apparent order. Probability is relative in part to this ignorance, and in part to our knowledge." (Pierre-Simon Laplace, "Mémoire sur les Approximations des Formules qui sont Fonctions de Très Grands Nombres", 1783)

"The mathematician pays not the least regard either to testimony or conjecture, but deduces everything by demonstrative reasoning, from his definitions and axioms. Indeed, whatever is built upon conjecture, is improperly called science; for conjecture may beget opinion, but cannot produce knowledge." (Thomas Reid, "Essays on the Intellectual Powers of Man", 1785)

"On completing one discovery we never fail to get an imperfect knowledge of others of which you could have no idea before […]" (Joseph Priestley, 1786)

"As there is no study which may be so advantageously entered upon with a less stock of preparatory knowledge than mathematics, so there is none in which a greater number of uneducated men have raised themselves, by their own exertions, to distinction and eminence. […] Many of the intellectual defects which, in such cases, are commonly placed to the account of mathematical studies, ought to be ascribed to the want of a liberal education in early youth." (Dugald Stewart, "Elements of the Philosophy of the Human Mind", 1792)

"The power of Reason […] is unquestionably the most important by far of those which are comprehended under the general title of Intellectual. It is on the right use of this power that our success in the pursuit of both knowledge and of  happiness depends; and it is by the exclusive possession of it that man is distinguished, in the most essential respects, from the lower animals. It is, indeed, from their subserviency to its operations, that the other faculties […] derive their chief value." (Dugald Stewart, "Elements of the Philosophy of the Human Mind", 1792)

"Conjecture may lead you to form opinions, but it cannot produce knowledge. Natural philosophy must be built upon the phenomena of nature discovered by observation and experiment." (George Adams, "Lectures on Natural and Experimental Philosophy" Vol. 1, 1794)

11 June 2021

On Equilibrium (1900-1919)

"When we study the structure of the atom, we shall arrive at the conclusion that it is an immense reservoir of energy solely constituted by a system of imponderable elements maintained in equilibrium by the rotations, attractions and repulsions of its component parts." (Gustave Le Bon, "The Evolution of Matter", 1907)

"All thinking is of disturbance, dynamical, a state of unrest tending towards equilibrium. It is all a mode of classifying and of criticising with a view of knowing whether it gives us, or is likely to give us, pleasure or no." (Samuel Butler, "Thinking - The Note-Books of Samuel Butler", 1912)

"The network of ideas remains and forms as it were a moving cobweb in which repose wriggles and tosses, incapable of finding a stable equilibrium." (Jean H Fabre, "The Life of the Fly", 1913)

"We rise from the conception of form to an understanding of the forces which gave rise to it [...] in the representation of form we see a diagram of forces in equilibrium, and in the comparison of kindred forms we discern the magnitude and the direction of the forces which have sufficed to convert the one form into the other." (D'Arcy Wentworth Thompson, "On Growth and Form" Vol. 2, 1917)

"A society in stable equilibrium is - by definition - one that has no history and wants no historians." (Henry Adams, "The Degradation of the Democratic Dogma", 1919)

"All biologic phenomena act to adjust: there are no biologic actions other than adjustments. Adjustment is another name for Equilibrium. Equilibrium is the Universal, or that which has nothing external to derange it." (Charles Fort, The Book of the Damned, 1919)

01 June 2021

On Syllogism I

"The Syllogism consists of propositions, propositions consist of words, words are symbols of notions. Therefore if the notions themselves (which is the root of the matter) are confused and over-hastily abstracted from the facts, there can be no firmness in the superstructure. Our only hope therefore lies in a true induction." (Francis Bacon, The New Organon, 1620)

"[…] mathematics is not, never was, and never will be, anything more than a particular kind of language, a sort of shorthand of thought and reasoning. The purpose of it is to cut across the complicated meanderings of long trains of reasoning with a bold rapidity that is unknown to the mediaeval slowness of the syllogisms expressed in our words." (Charles Nordmann, "Einstein and the Universe", 1922)

"Knowledge is ours only if, at the moment of need, it offers itself to the mind without syllogisms or demonstrations for which there is no time." (André Maurois, "Un Art de Vivre" ["The Art of Living"], 1939)

"A serious threat to the very life of science is implied in the assertion that mathematics is nothing but a system of conclusions drawn from definitions and postulates that must be consistent but otherwise may be created by the free will of the mathematician. If this description were accurate, mathematics could not attract any intelligent person. It would be a game with definitions, rules and syllogisms, without motivation or goal." (Richard Courant & Herbert Robbins, "What Is Mathematics?", 1941)

"The construction of hypotheses is a creative act of inspiration, intuition, invention; its essence is the vision of something new in familiar material. The process must be discussed in psychological, not logical, categories; studied in autobiographies and biographies, not treatises on scientific method; and promoted by maxim and example, not syllogism or theorem." (Milton Friedman, "Essays in Positive Economics", 1953)

"[…] the distinction between rigorous thinking and more vague ‘imaginings’; even in mathematics itself, all is not a question of rigor, but rather, at the start, of reasoned intuition and imagination, and, also, repeated guessing. After all, most thinking is a synthesis or juxtaposition of advances along a line of syllogisms - perhaps in a continuous and persistent ‘forward'’ movement, with searching, so to speak ‘sideways’, in directions which are not necessarily present from the very beginning and which I describe as ‘sending out exploratory patrols’ and trying alternative routes." (Stanislaw M Ulam, "Adventures of a Mathematician", 1976)

"Since mental models can take many forms and serve many purposes, their contents are very varied. They can contain nothing but tokens that represent individuals and identities between them, as in the sorts of models that are required for syllogistic reasoning. They can represent spatial relations between entities, and the temporal or causal relations between events. A rich imaginary model of the world can be used to compute the projective relations required for an image. Models have a content and form that fits them to their purpose, whether it be to explain, to predict, or to control." (Philip Johnson-Laird, "Mental models: Toward a cognitive science of language, inference, and consciousness", 1983)

"Whenever I have talked about mental models, audiences have readily grasped that a layout of concrete objects can be represented by an internal spatial array, that a syllogism can be represented by a model of individuals and identities between them, and that a physical process can be represented by a three-dimensional dynamic model. Many people, however, have been puzzled by the representation of abstract discourse; they cannot understand how terms denoting abstract entities, properties or relations can be similarly encoded, and therefore they argue that these terms can have only 'verbal' or propositional representations." (Philip Johnson-Laird, "Mental Models: Towards a Cognitive Science of Language, Inference and Consciousness", 1983)

"Formal logic and the logical syllogism encapsulate connectedness in reasoning." (Marshall McLuhan & Eric McLuhan, "Laws of Media: The New Science", 1988)

"Metaphorizing is a manner of thinking, not a property of thinking. It is a capacity of thought, not its quality. It represents a mental operation by which a previously existing entity is described in the characteristics of another one on the basis of some similarity or by reasoning. When we say that something is (like) something else, we have already performed a mental operation. This operation includes elements such as comparison, paralleling and shaping of the new image by ignoring its less satisfactory traits in order that this image obtains an aesthetic value. By this process, for an instant we invent a device, which serves as the pole vault for the comparison’s jump. Once the jump is made the pole vault is removed. This device could be a lightning-speed logical syllogism, or a momentary created term, which successfully merges the traits of the compared objects." (Ivan Mladenov, "Conceptualizing Metaphors: On Charles Peirce’s marginalia", 2006)

04 May 2021

On Facts (1890-1899)

"The study of theory must go hand in hand with that of facts: and for dealing with most modern problems it is modern facts that are of the greatest use." (Alfred Marshall, "Principles of Economics", 1890)

"The graphical method has considerable superiority for the exposition of statistical facts over the tabular. A heavy bank of figures is grievously wearisome to the eye, and the popular mind is as incapable of drawing any useful lessons from it as of extracting sunbeams from cucumbers." (Arthur B Farquhar & Henry Farquhar, "Economic and Industrial Delusions", 1891)

"All great scientists have, in a certain sense, been great artists; the man with no imagination may collect facts, but he cannot make great discoveries." (Karl Pearson, "The Grammar of Science", 1892)

"It is a capital mistake to theorize before one has data. Insensibly one begins to twist facts to suit theories, instead of theories to suit facts." (Sir Arthur C Doyle, "The Adventures of Sherlock Holmes", 1892)

"The classification of facts, the recognition of their sequence and relative significance is the function of science, and the habit of forming a judgment upon these facts unbiased by personal feeling is characteristic of what may be termed the scientific frame of mind." (Karl Pearson, "The Grammar of Science", 1892)

"The true aim of the teacher must be to impart an appreciation of method and not a knowledge of facts." (Karl Pearson, "The Grammar of Science", 1892)

"Facts are not much use, considered as facts. They bewilder by their number and their apparent incoherency. Let them be digested into theory, however, and brought into mutual harmony, and it is another matter. Theory is of the essence of facts. Without theory scientific knowledge would be only worthy of the mad house." (Oliver Heaviside, "Electromagnetic Theory", 1893)

"Scientific facts accumulate rapidly, and give rise to theories with almost equal rapidity. These theories are often wonderfully enticing, and one is apt to pass from one to another, from theory to theory, without taking care to establish each before passing on to the next, without assuring oneself that the foundation on which one is building is secure. Then comes the crash; the last theory breaks down utterly, and on attempting to retrace our steps to firm ground and start anew, we may find too late that one of the cards, possibly at the very foundation of the pagoda, is either faultily placed or in itself defective, and that this blemish easily remedied if detected in time has, neglected, caused the collapse of the whole structure on whose erection so much skill and perseverance have been spent." (Arthur M Marshall, 1894)

"Without a theory all our knowledge of nature would be reduced to a mere inventory of the results of observation. Every scientific theory must be regarded as an effort of the human mind to grasp the truth, and as long as it is consistent with the facts, it forms a chain by which they are linked together and woven into harmony." (Thomas Preston, "The Theory of Heat", 1894)

"The first step, whenever a practical problem is set before a mathematician, is to form the mathematical hypothesis. It is neither needful nor practical that we should take account of the details of the structure as it will exist. We have to reason about a skeleton diagram in which bearings are reduced to points, pieces to lines, etc. and [in] which it is supposed that certain relations between motions are absolutely constrained, irrespective of forces. Some writers call such a hypothesis a fiction, and say that the mathematician does not solve the real problem, but only a fictitious one. That is one way of looking at the matter, to which I have no objection to make: only, I notice, that in precisely the same sense in which the mathematical hypothesis is 'false', so also is this statement 'false', that it is false. Namely, both representations are false in the sense that they omit subsidiary elements of the fact, provided that element of the case can be said to be subsidiary which those writers overlook, namely, that the skeleton diagram is true in the only sense in which from the nature of things any mental representation, or understanding, of the brute existent can be true. For every possible conception, by the very nature of thought, involves generalization; now generalization omits, means to omit, and professes to omit, the differences between the facts generalized." (Charles S Peirce, "Report on Live Loads", cca. 1895)

"The world is chiefly a mental fact. From mind it receives the forms of time and space, the principle of causality, color, warmth, and beauty. Were there no mind, there would be no world." (John L Spalding, "Means and Ends of Education", 1895)

"In scientific investigations, it is permitted to invent any hypothesis and, if it explains various large and independent classes of facts, it rises to the ranks of a well-grounded theory." (Charles Darwin, "The Variations of Animals and Plants Under Domestication" Vol. 1, 1896)

"Mathematics is the most abstract of all the sciences. For it makes no external observations, nor asserts anything as a real fact. When the mathematician deals with facts, they become for him mere ‘hypotheses’; for with their truth he refuses to concern himself. The whole science of mathematics is a science of hypotheses; so that nothing could be more completely abstracted from concrete reality." (Charles S Peirce, "The Regenerated Logic", The Monist Vol. 7 (1), 1896)

"Round about the accredited and orderly facts of every science there ever fl oats a sort of dust-cloud of exceptional observations, of occurrences minute and irregular and seldom met with, which it always proves more easy to ignore than to attend to […]" (William James, "The Will to Believe", 1896)

"Science like life feeds on its own decay. New facts burst old rules; then newly developed concepts bind old and new together into a reconciling law." (William James, "The Will to Believe and Other Essays in Popular Philosophy", 1896)

"The scientific value of truth is not, however, ultimate or absolute. It rests partly on practical, partly on aesthetic interests. As our ideas are gradually brought into conformity with the facts by the painful process of selection, - for intuition runs equally into truth and into error, and can settle nothing if not controlled by experience, - we gain vastly in our command over our environment. This is the fundamental value of natural science" (George Santayana, "The Sense of Beauty: Being the Outlines of Aesthetic Theory", 1896)

"To use an old analogy - and here we can hardly go except upon analogy - while the building of Nature is growing spontaneously from within, the model of it, which we seek to construct in our descriptive science, can only be constructed by means of scaffolding from without, a scaffolding of hypotheses. While in the real building all is continuous, in our model there are detached parts which must be connected with the rest by temporary ladders and passages, or which must be supported till we can see how to fill in the understructure. To give the hypotheses equal validity with facts is to confuse the temporary scaffolding with the building itself." (John H Poynting, 1899)

17 March 2021

Mathematical Models III

"Mathematical model making is an art. If the model is too small, a great deal of analysis and numerical solution can be done, but the results, in general, can be meaningless. If the model is too large, neither analysis nor numerical solution can be carried out, the interpretation of the results is in any case very difficult, and there is great difficulty in obtaining the numerical values of the parameters needed for numerical results." (Richard E Bellman, "Eye of the Hurricane: An Autobiography", 1984)

"Symmetries abound in nature, in technology, and - especially - in the simplified mathematical models we study so assiduously. Symmetries complicate things and simplify them. They complicate them by introducing exceptional types of behavior, increasing the number of variables involved, and making vanish things that usually do not vanish. They simplify them by introducing exceptional types of behavior, increasing the number of variables involved, and making vanish things that usually do not vanish. They violate all the hypotheses of our favorite theorems, yet lead to natural generalizations of those theorems. It is now standard to study the 'generic' behavior of dynamical systems. Symmetry is not generic. The answer is to work within the world of symmetric systems and to examine a suitably restricted idea of genericity." (Ian Stewart, "Bifurcation with symmetry", 1988)

"Pedantry and sectarianism aside, the aim of theoretical physics is to construct mathematical models such as to enable us, from the use of knowledge gathered in a few observations, to predict by logical processes the outcomes in many other circumstances. Any logically sound theory satisfying this condition is a good theory, whether or not it be derived from ‘ultimate’ or ‘fundamental’ truth." (Clifford Truesdell & Walter Noll, "The Non-Linear Field Theories of Mechanics" 2nd Ed., 1992)

"[…] interval mathematics and fuzzy logic together can provide a promising alternative to mathematical modeling for many physical systems that are too vague or too complicated to be described by simple and crisp mathematical formulas or equations. When interval mathematics and fuzzy logic are employed, the interval of confidence and the fuzzy membership functions are used as approximation measures, leading to the so-called fuzzy systems modeling." (Guanrong Chen & Trung Tat Pham, "Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems", 2001)

"Modeling, in a general sense, refers to the establishment of a description of a system (a plant, a process, etc.) in mathematical terms, which characterizes the input-output behavior of the underlying system. To describe a physical system […] we have to use a mathematical formula or equation that can represent the system both qualitatively and quantitatively. Such a formulation is a mathematical representation, called a mathematical model, of the physical system." (Guanrong Chen & Trung Tat Pham, "Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems", 2001)

"An important aspect of the global theory of dynamical systems is the stability of the orbit structure as a whole. The motivation for the corresponding theory comes from applied mathematics. Mathematical models always contain simplifying assumptions. Dominant features are modeled; supposed small disturbing forces are ignored. Thus, it is natural to ask if the qualitative structure of the set of solutions - the phase portrait - of a model would remain the same if small perturbations were included in the model. The corresponding mathematical theory is called structural stability." (Carmen Chicone, "Stability Theory of Ordinary Differential Equations" [Mathematics of Complexity and Dynamical Systems, 2012])

"Models do not and need not match reality in all of its aspects and details to be adequate. A mathematical model is usually developed for a specific class of target systems, and its validity is determined relative to its intended applications. A model is considered valid within its intended domain of applicability provided that its predictions in that domain fall within an acceptable range of error, specified prior to the model’s development or identification." (Zoltan Domotor, "Mathematical Models in Philosophy of Science" [Mathematics of Complexity and Dynamical Systems, 2012])

"Simplified description of a real world system in mathematical terms, e. g., by means of differential equations or other suitable mathematical structures." (Benedetto Piccoli, Andrea Tosin, "Vehicular Traffic: A Review of Continuum Mathematical Models" [Mathematics of Complexity and Dynamical Systems, 2012])

"Stated loosely, models are simplified, idealized and approximate representations of the structure, mechanism and behavior of real-world systems. From the standpoint of set-theoretic model theory, a mathematical model of a target system is specified by a nonempty set - called the model’s domain, endowed with some operations and relations, delineated by suitable axioms and intended empirical interpretation." (Zoltan Domotor, "Mathematical Models in Philosophy of Science" [Mathematics of Complexity and Dynamical Systems, 2012])

"The standard view among most theoretical physicists, engineers and economists is that mathematical models are syntactic (linguistic) items, identified with particular systems of equations or relational statements. From this perspective, the process of solving a designated system of (algebraic, difference, differential, stochastic, etc.) equations of the target system, and interpreting the particular solutions directly in the context of predictions and explanations are primary, while the mathematical structures of associated state and orbit spaces, and quantity algebras – although conceptually important, are secondary." (Zoltan Domotor, "Mathematical Models in Philosophy of Science" [Mathematics of Complexity and Dynamical Systems, 2012])

20 February 2021

Bas C van Fraassen - Collected Quotes

"A map is a graphical representation of geographical or astronomical features, but this may range from a sketch of a subway system, to an interactive, zoomable, or animated map on a computer which constantly changes in front of the eyes."  (Bas C van Fraassen, "Scientific Representation: Paradoxes of Perspective", 2008)

"A map is designed to help one get around in the landscape it depicts. [...]"  (Bas C van Fraassen, "Scientific Representation: Paradoxes of Perspective", 2008)

"A model often contains much that does not correspond to any observable feature in the domain. Then, from an empiricist point of view, the model’s structure must be taken to reveal structure in the observable phenomena, while the rest of the model must be serving that purpose indirectly. It may be practically as well as theoretically useful to think of the phenomena as embedded in a larger - and largely unobservable - structure."  (Bas C van Fraassen, "Scientific Representation: Paradoxes of Perspective", 2008)

"A scale model represents, and yields information about what it is a model of, by selective resemblance. [...] Scale models can be produced for the sheer aesthetic pleasure of it, but more typically they serve in studies meant to design the very things of which they are meant to be the scaled down versions."  (Bas C van Fraassen, "Scientific Representation: Paradoxes of Perspective", 2008)

"A science presents us with representations of the phenomena through artifacts, both abstract, such as theories and mathematical models, and concrete such as graphs, tables, charts, and ‘table-top’ models. These representations do not form a haphazard compilation though any unity, in the range of representations made available, is visible mainly at the more abstract levels."  (Bas C van Fraassen, "Scientific Representation: Paradoxes of Perspective", 2008)

"An algebra is a mathematical structure consisting of a set of elements and a collection of operators on those elements - though the term is variously defined in different contexts in mathematics, so as to narrow the meaning (e.g. an algebra is a vector space with a bilinear multiplication operation)."  (Bas C van Fraassen, "Scientific Representation: Paradoxes of Perspective", 2008)

"[...] construction of a data model is precisely the selective relevant depiction of the phenomena by the user of the theory required for the possibility of representation of the phenomenon."  (Bas C van Fraassen, "Scientific Representation: Paradoxes of Perspective", 2008)

"For unqualified adequacy of the theory, what is required is that the surface models of phenomena fit properly with or into the theoretical models. The surface models will provide probability functions for events that are classified as outcomes in situations classified as measurements of given observables."  (Bas C van Fraassen, "Scientific Representation: Paradoxes of Perspective", 2008)

"In maps we have scale models of terrain, but projected onto a plane, thus producing occlusion of a sort not inherent to three-dimensional imaging. Maps do not usually have an obvious perspective; but we see perspectivity when, for example, the curvature of the earth makes marginal distortion inevitable as a result of this projection that lowers the dimensionality. A map too is the product of a measuring procedure, but they bring to light a much more important point about ‘point of view’, essentially independent of these limitations in cartography. The point extends to all varieties of modeling, but is made salient by the sense in which use enters the concept of ‘map’ from the beginning. A map is not only an object used to represent features of a terrain, it is an object for the use of the industrial designer, the navigator, and most of all the traveler, to plan and direct action. This brings us to an aspect of scientific representation not touched on so far, though implicit in the discussion of perspective, crucial to its overall understanding: its indexicality."  (Bas C van Fraassen, "Scientific Representation: Paradoxes of Perspective", 2008)

"The general concept of a map is not so different from that of a model, though the one is extrapolated from a graph with spatial similarity to certain features of a landscape, and the other from a table-top contraption."  (Bas C van Fraassen, "Scientific Representation: Paradoxes of Perspective", 2008)

'Model' is a metaphor, whose base is the simply constructed table-top model."  (Bas C van Fraassen, "Scientific Representation: Paradoxes of Perspective", 2008)

"Scale modeling displays the characteristics of picturing, by relying on selective resemblance to achieve its aim, but in a way that is subject to inevitable occlusion or distortion."  (Bas C van Fraassen, "Scientific Representation: Paradoxes of Perspective", 2008)

"Scientific theories represent how things are, doing so mainly by presenting a range of models as candidate representations of the phenomena. [...] A theory provides, in essence, a set of models. The 'in essence' signals much that must be delicately expanded and qualified; [...] These models - the theoretical models - are provided in the first instance to fit observed and observable phenomena. Since the description of these phenomena is in practice already by means of models - the ‘data models’ or ‘surface models’, we can put the requirement as follows: the data or surface models must ideally be isomorphically embeddable in theoretical models."  (Bas C van Fraassen, "Scientific Representation: Paradoxes of Perspective", 2008)

"The activity of representation is successful in that case only if the recipients are able to receive that information through their ‘viewing’ of the representation. [...] In science the original creation of a model may have been a purely theoretical activity, but eventually it provides input for an application, where conditional predictions made on the basis of that model feed into planning and action."  (Bas C van Fraassen, "Scientific Representation: Paradoxes of Perspective", 2008)

"The observable phenomenon makes its appearance to us first of all in the outcome of a specific measurement, or large set of such measurements - or at slight remove, in a data model constructed from these individual outcomes, or at a slightly further remove yet, in the surface model constructed by extrapolating the patterns in the data model to something finer than our instruments can register."  (Bas C van Fraassen, "Scientific Representation: Paradoxes of Perspective", 2008)

"The physical sciences give us representations of nature, and scientific representation is in general three-faceted. From a purely foundational point of view, the theoretical models that depict the ‘underlying reality’ are the main thing. But some elements or substructures of those models are meant to represent the observable phenomena - the empirical substructures."  (Bas C van Fraassen, "Scientific Representation: Paradoxes of Perspective", 2008)

"Theories represent the phenomena just in case their models, in some sense, 'share the same structure' with those phenomena - that, in slogan form, is what is called the semantic view of theories. [...] Embedding, that means displaying an isomorphism to selected parts of those models. Here is the argument to present the first challenge. For a phenomenon to be embeddable in a model, that means that it is isomorphic to a part of that model. So the two, the phenomenon and the relevant model part must have the same structure. Therefore, the phenomenon must have a structure, and this shared structure is obviously not itself a physical, concrete individual - so what is implied here is something of the order of realism about universals."  (Bas C van Fraassen, "Scientific Representation: Paradoxes of Perspective", 2008)

"[...] when a theoretical model is said to represent certain phenomena, there is indeed reference to a matching, namely between parts of the theoretical models and the relevant data models - both of them abstract entities. Note now, the crucial word in this sentence: the punch comes in the word 'relevant'. There is nothing in an abstract structure itself that can determine that it is the relevant data model, to be matched by the theory. A particular data model is relevant because it was constructed on the basis of results gathered in a certain way, selected by specific criteria of relevance, on certain occasions, in a practical experimental or observational setting, designed for that purpose."  (Bas C van Fraassen, "Scientific Representation: Paradoxes of Perspective", 2008)

10 February 2021

Mental Models LXII

"A mental model is a collection of 'connected' autonomous objects. Running  a mental model corresponds to modifying the parameters of the model by propagating information using the internal rules and specified topology. Running a mental model can also occur when autonomous objects change state. For us the definition of state is distinct from the current parameter values of an object. A state change consists of the replacement of one set of behavior rules with another." (Michael D Williams et al, "Human Reasoning About a Simple Physical System", [in "Mental Models", Ed(s). Dedre Gentner & Albert L Stevens], 1983)

"Central to this conception of mental models is the notion of autonomous objects. An autonomous object is a mental object with an explicit representation of state, an explicit representation of its topological connections to other objects, and a set of internal parameters. Associated with each autonomous object is a set of rules which modify its parameters and thus specify its behavior." (Michael D Williams et al, "Human Reasoning About a Simple Physical System", [in "Mental Models", Ed(s). Dedre Gentner & Albert L Stevens], 1983)

"In the consideration of mental models we need really consider four different things: the target system, the conceputal model of that target system, the user’s mental model of the target system, and the scientist's conceptualization of that mental model. The system that the person is learning or using is, by definition, the target system. A conceptual model is invented to provide an appropriate representation of the target system, appropriate in the sense of being accurate, consistent, and complete." (Donald A Norman, "Some Observations on Mental Models" [in "Mental Models", Ed(s). Dedre Gentner & Albert L Stevens], 1983)

"The purpose of a mental model is to allow the person to understand and to anticipate the behavior of a physical system. This means that the model must have predictive power, either by applying rules of inference or by procedural derivation (in whatever manner these properties may be realized in a person); in other words, it should be possible for people to ' run' their models mentally. This means that the conceptual mental model must also include a model of the relevant human information processing and knowledge structures that make it possible for the person to use a mental model to predict and understand the physical system." (Donald A Norman, "Some Observations on Mental Models" [in "Mental Models"], Ed(s). Dedre Gentner & Albert L Stevens], 1983)

"From a functional point of view, mental models can be described as symbolic structures which permit people: to generate descriptions of the purpose of a system, to generate descriptions of the architecture of a system, to provide explanations of the state of a system, to provide explanations of the functioning of a system, to make predictions of future states of a system." (Gert Rickheit & Lorenz Sichelschmidt, "Mental Models: Some Answers, Some Questions, Some Suggestions", 1999)

"Under the label 'cognitive maps', mental models have been conceived of as the mental representation of spatial aspects of the environment. A mental model, in this sense, comprises the topology of an area, including relevant districts, landmarks, and paths. [...] Under the label 'naive physics', mental models have been conceived of as the mental representation of natural or technical systems. A mental model, in this sense, comprises the effective determinants, true or not, of the functioning of a physical system. [...] Under the label 'model based reasoning', the mental models notion is featured in yet another area of cognitive science - deductive reasoning. In contrast to the commonly held view that logical competence depends on formal rules of deduction, it has been argued that reasoning is a semantic process based on the manipulation of mental models. [...] Finally, under terms like 'discourse model', 'situation model', or 'scenario', mental models have been conceived of as the mental representation of a verbal description of some real or fictional state of affairs. The role of mental models in the comprehension of discourse is discussed in more detail below." (Gert Rickheit & Lorenz Sichelschmidt, "Mental Models: Some Answers, Some Questions, Some Suggestions", 1999)

"A mental model is an internal representation with analogical relations to its referential object, so that local and temporal aspects of the object are preserved. It comes somewhat close to the mental images people report having in their minds whilst processing information. The great advantage of the notion of mental models, however, is its ability to include the notion of a partner model and the notion of a situation model. Thus, mental models can build a bridge to the other two dimensions of communication, namely interaction and situation." (Gert Rickheit et al, "The concept of communicative competence" [in "Handbook of Communication Competence"], 2008)

"Because all mental models or mindsets are incomplete, we can engage in second-order studies, evaluations, judgments, and assessments about our own and other operative mental models. Of course this is highly complex since the act of reflection is itself a further of framing or reframing." (Patricia H Werhane et al, "Obstacles to Ethical: Decision-Making Mental Models, Milgram and the Problem of Obedience", 2013)

"Mental models bind our awareness within a particular scaffold and then selectively can filter the content we subsequently receive. Through recalibration using revised mental models, we argue, we cultivate strategies anew, creating new habits, and galvanizing more intentional and evolved mental models. This recalibration often entails developing a strong sense of self and self-worth, realizing that each of us has a range of moral choices that may deviate from those in authority, and moral imagination." (Patricia H Werhane et al, "Obstacles to Ethical: Decision-Making Mental Models, Milgram and the Problem of Obedience", 2013)

"These framing perspectives or mental models construe the data of our experiences, and it is the construed data that we call 'facts'. What we often call reality, or the world, is constructed or socially construed in certain ways such that one cannot get at the source of the data except through these construals." (Patricia H Werhane et al, "Obstacles to Ethical: Decision-Making Mental Models, Milgram and the Problem of Obedience", 2013)

On Complex Numbers XVI

"When the formulas admit of intelligible interpretation, they are accessions to knowledge; but independently of their interpretation they are invaluable as symbolical expressions of thought. But the most noted instance is the symbol called the impossible or imaginary, known also as the square root of minus one, and which, from a shadow of meaning attached to it, may be more definitely distinguished as the symbol of semi-inversion. This symbol is restricted to a precise signification as the representative of perpendicularity in quaternions, and this wonderful algebra of space is intimately dependent upon the special use of the symbol for its symmetry, elegance, and power."  (Benjamin Peirce, "On the Uses and Transformations of Linear Algebra", 1875)

 "√-1 is take for granted today. No serious mathematician would deny that it is a number. Yet it took centuries for √-1 to be officially admitted to the pantheon of numbers. For almost three centuries, it was controversial; mathematicians didn't know what to make of it; many of them worked with it successfully without admitting its existence. […] Primarily for cognitive reasons. Mathematicians simply could not make it fit their idea of what a number was supposed to be. A number was supposed to be a magnitude. √-1 is not a magnitude comparable to the magnitudes of real numbers. No tree can be √-1 units high. You cannot owe someone √-1 dollars. Numbers were supposed to be linearly ordered. √-1 is not linearly ordered with respect to other numbers." (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being, 2000)

"From a formal perspective, much about complex numbers and arithmetic seems arbitrary. From a purely algebraic point of view, i arises as a solution to the equation x^2+1=0. There is nothing geometric about this - no complex plane at all. Yet in the complex plane, the i-axis is 90° from the x-axis. Why? Complex numbers in the complex plane add like vectors. Why? Complex numbers have a weird rule of multiplication […]" (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being, 2000)

"[…] i is not a real number-not ordered anywhere relative to the real numbers! In other words, it does not even have the central property of ‘numbers’, indicating a magnitude that can be linearly compared to all other magnitudes. You can see why i has been called imaginary. It has almost none of the properties of the small natural numbers-not subitizability, not groupability, and not even relative magnitude. If i is to be a number, it is a number only by virtue of closure and the laws of arithmetic." (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being, 2000)

"The complex plane is just the 90° rotation plane-the rotation plane with the structure imposed by the 90° Rotation metaphor added to it. Multiplication by i is 'just' rotation by 90°. This is not arbitrary; it makes sense. Multiplication by-1 is rotation by 180°. A rotation of 180° is the result of two 90° rotations. Since i times i is -1, it makes sense that multiplication by i should be a rotation by 90°, since two of them yield a rotation by 180°, which is multiplication by -1." (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being, 2000)

"Negative numbers posed some of the same quandaries that the imaginary numbers did to Renaissance mathematicians - they didn’t seem to correspond to quantities associated with physical objects or geometrical figures. But they proved less conceptually challenging than the imaginaries. For instance, negative numbers can be thought of as monetary debts, providing a readily grasped way to make sense of them." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"Raising e to an imaginary-number power can be pictured as a rotation operation in the complex plane. Applying this interpretation to e raised to the 'i times π' power means that Euler’s formula can be pictured in geometric terms as modeling a half-circle rotation." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"The association of multiplication with vector rotation was one of the geometric interpretation's most important elements because it decisively connected the imaginaries with rotary motion. As we'll see, that was a big deal." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"The fact that multiplying positive 4i times positive 4i yields negative 16 seems like saying that the friend of my friend is my enemy. Which in turn suggests that bad things would happen if i and its offspring were granted citizenship in the number world. Unlike real numbers, which always feel friendly toward the friends of their friends, the i-things would plainly be subject to insane fits of jealousy, causing them to treat numbers that cozy up to their friends as threats. That might cause a general breakdown of numerical civility." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"Basis real and imaginary numbers have eternal and necessary reality. Complex numbers do not. They are temporal and contingent in the sense that for complex numbers to exist, we first have to carry out an operation: adding basis real and imaginary numbers together. Complex numbers therefore do not exist in their own right. They are constructed. They are derived. Symmetry breaking is exactly where constructed numbers come into existence. The very act of adding a sine wave to a cosine wave is the sufficient condition to create a broken symmetry: a complex number. The 'Big Bang', mathematically, is simply where a perfect array of basis sine and cosine waves start entering into linear combinations, creating a chain reaction, an 'explosion', of complex numbers - which corresponds to the 'physical' universe." (Thomas Stark, "God Is Mathematics: The Proofs of the Eternal Existence of Mathematics", 2018)

09 February 2021

Alan M MacEachren - Collected Quotes

"Cartography is about representation. This statement may seem obvious, but it has been overlooked in our search for organizing principles for the field. Rather than restricting research in cartography to maps that present well-defined messages (and suggesting a single, map-engineering approach to improving the transmission of these messages, as the communication approach did), attention to maps as spatial representation expands the field." (Alan M MacEachren, "How Maps Work: Representation, Visualization, and Design", 1995)

"Exploring maps as representation forges important links between cartography and a variety of cognate fields concerned with this topic in its various facets (including geographical information systems [GIs] and remote sensing, as well as art, cognitive science, sociology, cognitive and environmental psychology, semiotics, and even the history and philosophy of science)." (Alan M MacEachren, "How Maps Work: Representation, Visualization, and Design", 1995)

"It may be that the human brain not only perceives but stores the essentials of a visual scene using the same geometrical, quasi-symbolic, minimalist vocabulary found in maps." (Alan M MacEachren, "How Maps Work: Representation, Visualization, and Design", 1995)

"Maps, due to their melding of scientific and artistic approaches, always involve complex interaction between the denotative and the connotative meanings of signs they contain." (Alan M MacEachren, "How Maps Work: Representation, Visualization, and Design", 1995)

"The fact that map is a fuzzy and radial, rather than a precisely defined, category is important because what a viewer interprets a display to be will influence her expectations about the display and how she interacts with it." (Alan M MacEachren, "How Maps Work: Representation, Visualization, and Design", 1995)

"The representational nature of maps, however, is often ignored - what we see when looking at a map is not the word, but an abstract representation that we find convenient to use in place of the world. When we build these abstract representations we are not revealing knowledge as much as are creating it." (Alan M MacEachren, "How Maps Work: Representation, Visualization, and Design", 1995)

"To make maps that work, we must depict categories using methods that match the structures of human mental categorization." (Alan M MacEachren, "How Maps Work: Representation, Visualization, and Design", 1995)

"Understanding how maps work and why maps work (or do not work) as representations in their own right and as prompts to further representations, and what it means for a map to work, are critical issues as we embark on a visual information age." (Alan M MacEachren, "How Maps Work: Representation, Visualization, and Design", 1995)

"When visualization tools act as a catalyst to early visual thinking about a relatively unexplored problem, neither the semantics nor the pragmatics of map signs is a dominant factor. On the other hand, syntactics (or how the sign-vehicles, through variation in the visual variables used to construct them, relate logically to one another) are of critical importance." (Alan M MacEachren, "How Maps Work: Representation, Visualization, and Design", 1995)

"Cartography as a discipline has a significant stake in the evolving role of maps within systems for scientific visualization, within spatial decision support systems, within hypermedia information access systems, and within virtual reality environments." (Alan M MacEachren, "Exploratory cartographic visualization: advancing the agenda", 1997)

"The nature of maps and of their use in science and society is in the midst of remarkable change - change that is stimulated by a combination of new scientific and societal needs for geo-referenced information and rapidly evolving technologies that can provide that information in innovative ways. A key issue at the heart of this change is the concept of ‘visualization’." (Alan M MacEachren, "Exploratory cartographic visualization: advancing the agenda", 1997)

"Maps have been a successful form of representation for centuries by making the world understandable through systematic abstraction that retains the iconicity of space depicting space. Advances in methods and technologies are blurring the lines among maps and other forms of visual representation and pushing the bounds of 'map' as a concept toward both more realistic and more abstract depiction. As a result, there are a variety of unanswered questions about the attributes and implications of 'maps'." (Alan M MacEachren, "Research Challenges in Geovisualization", 2001)

08 February 2021

On Imagination (1925-1949)

"The sciences bring into play the imagination, the building of images in which the reality, of the past is blended with the ideals for the future, and from the picture there springs the prescience of genius." (William J Mayo, "Contributions of Pure Science to Progressive Medicine", The Journal of the American Medical Association Vol. 84 (20), 1925)

"We do not know why the imagination has accepted that image before the reason can reject it; or why such correspondences seem really to correspond to something in the soul." (Gilbert K Chesterton, "The Everlasting Man", 1925)

"The world is not run by thought, nor by imagination, but by opinion." (Elizabeth A Drew, "The Modern Novel", 1926)

"In this way things, external objects, are assimilated to more or less ordered motor schemas, and in this continuous assimilation of objects the child's own activity is the starting point of play. Not only this, but when to pure movement are added language and imagination, the assimilation is strengthened, and wherever the mind feels no actual need for accommodating itself to reality, its natural tendency will be to distort the objects that surround it in accordance with its desires or its fantasy, in short to use them for its satisfaction. Such is the intellectual egocentrism that characterizes the earliest form of child thought." (Jean Piaget, "The Moral Judgment of the Child", 1932)

"What is the inner secret of mathematical power? Briefly stated, it is that mathematics discloses the skeletal outlines of all closely articulated relational systems. For this purpose mathematics uses the language of pure logic with its score or so of symbolic words, which, in its important forms of expression, enables the mind to comprehend systems of relations otherwise completely beyond its power. These forms are creative discoveries which, once made, remain permanently at our disposal. By means of them the scientific imagination is enabled to penetrate ever more deeply into the rationale of the universe about us." (George D Birkhoff, "Mathematics: Quantity and Order", 1934)

"The scientist explores the world of phenomena by successive approximations. He knows that his data are not precise and that his theories must always be tested. It is quite natural that he tends to develop healthy skepticism, suspended judgment, and disciplined imagination." (Edwin P Hubble, 1938)

"The great instrument of moral good is the imagination; and poetry administers to the effect by acting on the cause." (Percy B Shelley, "A Defence of Poetry", 1840) [written 1821]

"The artist must bow to the monster of his own imagination." (Richard Wright, "Twelve Million Black Voices", 1941)

"Yet a review of receipt physics has shown that all attempts at mechanical models or pictures have failed and must fail. For a mechanical model or picture must represent things as happening in space and time, while it has recently become clear that the ultimate processes of nature neither occur in, nor admit of representation in, space and time. Thus an understanding of the ultimate processes of nature is for ever beyond our reach: we shall never be able - even in imagination - to open the case of our watch and see how the wheels go round. The true object of scientific study can never be the realities of nature, but only our own observations on nature." (James H Jeans, "Physics and Philosophy", 1942)

"The straight line of the geometers does not exist in the material universe. It is a pure abstraction, an invention of the imagination or, if one prefers, an idea of the Eternal Mind." (Eric T Bell, "The Magic of Numbers", 1946)

"For, in mathematics or symbolic logic, reason can crank out the answer from the symboled equations -even a calculating machine can often do so - but it cannot alone set up the equations. Imagination resides in the words which define and connect the symbols - subtract them from the most aridly rigorous mathematical treatise and all meaning vanishes." (Ralph W Gerard, "The Biological Basis of Imagination", American Thought, 1947)

"Imagination and fiction make up more than three-quarters of our real life." (Simone Weil, "Gravity and Grace", 1947)

"[...] when the pioneer in science sends for the groping feelers of his thoughts, he must have a vivid intuitive imagination, for new ideas are not generated by deduction, but by an artistically creative imagination. Nevertheless, the worth of a new idea is invariably determined, not by the degree of its intuitiveness - which, incidentally, is to a major extent a matter of experience and habit - but by the scope and accuracy of the individual laws to the discovery of which it eventually leads. (Max Planck, The Meaning and Limits of Exact Science, Science Vol. 110 (2857), 1949)

On Imagination (1900-1924)

"This is the greatest degree of impoverishment; the [mental] image, deprived little by little of its own characteristics, is nothing more than a shadow. […] Being dependent on the state of the brain, the image undergoes change like all living substance, - it is subject to gains and losses, especially losses. But each of the foregoing three classes has its use for the inventor. They serve as material for different kinds of imagination - in their concrete form, for the mechanic and the artist; in their schematic form, for the scientist and for others." (Théodule-Armand Ribot, "Essay on the Creative Imagination", 1900)

"This means that it is not a dead thing; it is not at all like a photographic plate with which one may reproduce copies indefinitely. Being dependent on the state of the brain, the image undergoes change like all living substance, - it is subject to gains and losses, especially losses. But each of the foregoing three classes has its use for the inventor. They serve as material for different kinds of imagination - in their concrete form, for the mechanic and the artist; in their schematic form, for the scientist and for others." (Théodule-Armand Ribot, "Essay on the Creative Imagination" , 1900)

"We form in the imagination some sort of diagrammatic, that is, iconic, representation of the facts, as skeletonized as possible. The impression of the present writer is that with ordinary persons this is always a visual image, or mixed visual and muscular; but this is an opinion not founded on any systematic examination." (Charles S Peirce, "Notes on Ampliative Reasoning", 1901)

"Imagination is as vital to any advance in science as learning and precision are essential for starting points." (Percival Lowell, "The Solar System", 1903)

"Nature talks in symbols; he who lacks imagination cannot understand her." (Abraham Miller, "Unmoral Maxims", 1906)

"Mathematics makes constant demands upon the imagination, calls for picturing in space (of one, two, three dimensions), and no considerable success can be attained without a growing ability to imagine all the various possibilities of a given case, and to make them defile before the mind's eye." (Jacob W A Young, "The Teaching of Mathematics", 1907)

"The motive for the study of mathematics is insight into the nature of the universe. Stars and strata, heat and electricity, the laws and processes of becoming and being, incorporate mathematical truths. If language imitates the voice of the Creator, revealing His heart, mathematics discloses His intellect, repeating the story of how things came into being. And the value of mathematics, appealing as it does to our energy and to our honor, to our desire to know the truth and thereby to live as of right in the household of God, is that it establishes us in larger and larger certainties. As literature develops emotion, understanding, and sympathy, so mathematics develops observation, imagination, and reason." (William E Chancellor, "A Theory of Motives, Ideals and Values in Education" 1907)

"The beautiful has its place in mathematics as elsewhere. The prose of ordinary intercourse and of business correspondence might be held to be the most practical use to which language is put, but we should be poor indeed without the literature of imagination. Mathematics too has its triumphs of the Creative imagination, its beautiful theorems, its proofs and processes whose perfection of form has made them classic. He must be a 'practical' man who can see no poetry in mathematics." (Wiliam F White, "A Scrap-book of Elementary Mathematics: Notes, Recreations, Essays", 1908)

"No system would have ever been framed if people had been simply interested in knowing what is true, whatever it may be. What produces systems is the interest in maintaining against all comers that some favourite or inherited idea of ours is sufficient and right. A system may contain an account of many things which, in detail, are true enough; but as a system, covering infinite possibilities that neither our experience nor our logic can prejudge, it must be a work of imagination and a piece of human soliloquy: It may be expressive of human experience, it may be poetical; but how should anyone who really coveted truth suppose that it was true?" (George Santayana, "The Genteel Tradition in American Philosophy", 1911)

"Only in men’s imagination does every truth find an effective and undeniable existence." (Joseph Conrad, "Some Reminiscences", 1912)

"What is the imagination? Only an arm or weapon of the interior energy; only the precursor of the reason." (Ralph W Emerson, "Miscellanies, Natural history of intellect", 1912)

"The concept of an independent system is a pure creation of the imagination. For no material system is or can ever be perfectly isolated from the rest of the world. Nevertheless it completes the mathematician’s ‘blank form of a universe’ without which his investigations are impossible. It enables him to introduce into his geometrical space, not only masses and configurations, but also physical structure and chemical composition." (Lawrence J Henderson, "The Order of Nature: An Essay", 1917)

"[…] because mathematics contains truth, it extends its validity to the whole domain of art and the creatures of the constructive imagination." (James B Shaw, "Lectures on the Philosophy of Mathematics", 1918)

"Nature uses human imagination to lift her work of creation to even higher levels." (Luigi Pirandello, "Six Characters in Search of an Author", 1921)

"The story of scientific discovery has its own epic unity - a unity of purpose and endeavour - the single torch passing from hand to hand through the centuries; and the great moments of science when, after long labour, the pioneers saw their accumulated facts falling into a significant order - sometimes in the form of a law that revolutionised the whole world of thought - have an intense human interest, and belong essentially to the creative imagination of poetry." (Alfred Noyes, "Watchers of the Sky", 1922)

04 February 2021

On Symbols (1860-1869)

"Observe this: the abstraction of the philosopher is meant to keep the object itself, with its perturbing suggestions, out of sight, allowing only one quality to fill the field of vision; whereas the abstraction of the poet is meant to bring the object itself into more vivid relief, to make it visible by means of the selected qualities. In other words, the one aims at abstract symbols, the other at picturesque effects. The one can carry on his deductions by the aid of colourless signs, X or Y. The other appeals to the emotions through the symbols which will most vividly express the real objects in their relations to our sensibilities." (George H Lewes, "The Principles of Success in Literature", 1865)

"Simplicity of structure means organic unity, whether the organism be simple or complex; and hence in all times the emphasis which critics have laid upon Simplicity, though they have not unfrequently confounded it with narrowness of range. In like manner, as we said just now, when treating of diction they have overlooked the fact that the simplest must be that which best expresses the thought. Simplicity of diction is integrity of speech; that which admits of least equivocation, that which by the clearest verbal symbols most readily calls up in the reader's mind the images and feelings which the writer wishes to call up. Such diction may be concrete or abstract, familiar or technical; its simplicity is determined by the nature of the thought. We shall often be simpler in using abstract and technical terms." (George H Lewes, "The Principles of Success in Literature", 1865)

"The degree in which each mind habitually substitutes signs for images will be, CETERIS PARIBUS [with other conditions remaining the same], the degree in which it is liable to error. This is not contradicted by the fact that mathematical, astronomical, and physical reasonings may, when complex, be carried on more successfully by the employment of signs; because in these cases the signs themselves accurately represent the abstractness of the relations. Such sciences deal only with relations, and not with objects; hence greater simplification ensures greater accuracy. But no sooner do we quit this sphere of abstractions to enter that of concrete things, than the use of symbols becomes a source of weakness. Vigorous and effective minds habitually deal with concrete images." (George H Lewes, "The Principles of Success in Literature", 1865)

"A symbol, however, should be something more than a convenient and compendious expression of facts. It is, in the strictest sense, an instrument for the discovery of facts, and is of value mainly with reference to this end, by its adaptation to which it is to be judged." (Benjamin C Brodie, "The Calculus of Chemical Observations", Philosophical Transactions of the Royal Society of London Vol. 156, 1866)

"I believe, therefore, that there can be no possible sense at all in speaking of any other truth for our representations except a practical [truth]. Our representations of things can be nothing else at all except symbols, naturally given signs for things, that we learn to use for the regulation of our motions and actions. When we have correctly learned to read such a symbol, we are then capable of so adjusting our actions with its help that they have the desired result, that is, the expected new sensations occur. Another comparison between representations and things not only fails to exist in actuality – here all schools agree – but any other kind of comparison is in no way thinkable and has no sense at all." (Hermann von Helmholtz, "Handbuch der Physologieschen Optik", 1867)

"If two forms expressed in the general symbols of universal arithmetic are equal to each other, then they will also remain equal when the symbols cease to represent simple magnitudes, and the operations also consequently have another meaning of any kind." (Hermann Hankel, "Theorie der Complexen Zahlensysteme", 1867)

"Nothing can be more fatal to progress than a too confident reliance on mathematical symbols; for the student is only too apt to take the easier course, and consider the formula not the fact as the physical reality." (William T Kelvin & Peter G Tait, "Treatise on Natural Philosophy", 1867)

"[...] there can be little doubt that the further science advances, the more extensively and consistently will all the phenomena of Nature be represented by materialistic formulae and symbols." (Thomas H Huxley, "On the Physical Basis of Life", 1869)

06 January 2021

Mental Models LX

"Chemistry and physics are experimental sciences; and those who are engaged in attempting to enlarge the boundaries of science by experiment are generally unwilling to publish speculations; for they have learned, by long experience, that it is unsafe to anticipate events. It is true, they must make certain theories and hypotheses. They must form some kind of mental picture of the relations between the phenomena which they are trying to investigate, else their experiments would be made at random, and without connection." (William Ramsay, "Radium and Its Products", Harper’s Magazine, 1904)

"A mental image gives you a framework upon which to work. It is like the drawing of the architect, or the map of the explorer. Think over this for a few moments until you get the idea firmly fixed in your mind." (William W Atkinson, "Practical Mental Influence and Mental Fascination", 1908)

"A mind exclusively bent upon the idea of utility necessarily narrows the range of the imagination. For it is the imagination which pictures to the inner eye of the investigator the indefinitely extending sphere of the possible, - that region of hypothesis and explanation, of underlying cause and controlling law. The area of suggestion and experiment is thus pushed beyond the actual field of vision." (John G Hibben, "The Paradox of Research", The North American Review 188 (634), 1908)

"The unconscious [...] is always empty - or, more accurately, it is as alien to mental images as is the stomach to the foods which pass through it." (Claude Levi-Strauss, "Structural Anthropology", 1958)

"A cognitive map is a specific way of representing a person's assertions about some limited domain, such as a policy problem. It is designed to capture the structure of the person's causal assertions and to generate the consequences that follow front this structure. […]  a person might use his cognitive map to derive explanations of the past, make predictions for the future, and choose policies in the present." (Robert M Axelrod, "Structure of Decision: The cognitive maps of political elites", 1976)

"The cognitive map is not a picture or image which 'looks like' what it represents; rather, it is an information structure from which map-like images can be reconstructed and from which behaviour dependent upon place information can be generated." (John O'Keefe & Lynn Nadel, "The Hippocampus as a Cognitive Map", 1978)

"A symbol is a mental representation regarding the internal reality referring to its object by a convention and produced by the conscious interpretation of a sign. In contrast to signals, symbols may be used every time if the receiver has the corresponding representation. Symbols also relate to feelings and thus give access not only to information but also to the communicator’s motivational and emotional state. The use of symbols makes it possible for the organism using it to evoke in the receiver the same response it evokes in himself. To communicate with symbols is to use a language." (Lars Skyttner, "General Systems Theory: Ideas and Applications", 2001)

"In the definition of meaning, it is assumed that both the source and receiver have previously coded (and stored) signals of the same or similar referents, such that the messages may have meaning and relate to behaviour. That is, the used symbols must have the same signification for both sender and receiver. If not, the receiver will create a different mental picture than intended by the transmitter. Meaning is generated by individuals in a process of social interaction with a more or less common environment. It is a relation subsisting within a field of experience and appears as an emergent property of a symbolic representation when used in culturally accepted interaction. The relation between the symbolic representation and its meaning is random. Of this, however, the mathematical theory has nothing to say. If human links in the chain of communication are missing, of course no questions of meaning will arise." (Lars Skyttner, "General Systems Theory: Ideas and Applications", 2001)

"The mental model is the arena where imagination takes place. It enables us to experiment with different scenarios by making local alterations to the model. […] To speak of causality, we must have a mental model of the real world. […] Our shared mental models bind us together into communities." (Judea Pearl & Dana Mackenzie, "The Book of Why: The new science of cause and effect", 2018)

"A mental model is a representation, inside your head, of an external reality. Mental models are the basic units which construct a person’s world view. It is the representation that a person has in his mind about the object he is interacting with. It is the way the person thinks about what it is they are doing or dealing with. Mental models shape our actions as to how we act or behave in a particular situation. They define what people will pay attention to and how they approach and solve problems. Mental models are tools for the mind." (Anshul Khare & Vishal Khandelwal, "Mental Models, Investing, And You" Vol 1)

06 December 2020

Mental Models LVI (Conceptual Models III)

"Mere deductive logic, whether you clothe it in mathematical symbols and phraseology or whether you enlarge its scope into a more general symbolic technique, can never take the place of clear relevant initial concepts of the meaning of your symbols, and among symbols I include words. If you are dealing with nature, your meanings must directly relate to the immediate facts of observation. We have to analyse first the most general characteristics of things observed, and then the more casual contingent occurrences. There can be no true physical science which looks first to mathematics for the provision of a conceptual model. Such a procedure is to repeat the errors of the logicians of the middle-ages." (Alfred N Whitehead, "Principle of Relativity", 1922)

"The 'physical' does not mean any particular kind of reality, but a particular kind of denoting reality, namely a system of concepts in the natural sciences which is necessary for the cognition of reality. 'The physical' should not be interpreted wrongly as an attribute of one part of reality, but not of the other ; it is rather a word denoting a kind of conceptual construction, as, e.g., the markers 'geographical' or 'mathematical', which denote not any distinct properties of real things, but always merely a manner of presenting them by means of ideas." (Moritz Schlick, "Allgemeine Erkenntnislehre", 1925)

"The rule is derived inductively from experience, therefore does not have any inner necessity, is always valid only for special cases and can anytime be refuted by opposite facts. On the contrary, the law is a logical relation between conceptual constructions; it is therefore deductible from upper laws and enables the derivation of lower laws; it has as such a logical necessity in concordance with its upper premises; it is not a mere statement of probability, but has a compelling, apodictic logical value once its premises are accepted."(Ludwig von Bertalanffy, "Kritische Theorie der Formbildung", 1928)

"As perceivers we select from all the stimuli falling on our senses only those which interest us, and our interests are governed by a pattern-making tendency, sometimes called a schema." (Mary Douglas, "Purity and Danger", 1966)

"Whether or not a given conceptual model or representation of a physical system happens to be picturable, is irrelevant to the semantics of the theory to which it eventually becomes attached. Picturability is a fortunate psychological occurrence, not a scientific necessity. Few of the models that pass for visual representations are picturable anyhow. For one thing, the model may be and usually is constituted by imperceptible items such as unextended particles and invisible fields. True, a model can be given a graphic representation - but so can any idea as long as symbolic or conventional diagrams are allowed. Diagrams, whether representational or symbolic, are meaningless unless attached to some body of theory. On the other hand theories are in no need of diagrams save for psychological purposes. Let us then keep theoretical models apart from visual analogues."  (Mario Bunge, "Philosophy of Physics", 1973)

"The understanding of a thing begins and ends with some conceptual model of it. The model is the better, the more accurate, and inclusive. But even rough models can be used to guide - or misguide - research." (Bunge A Mario, "Philosophy in Crisis: The Need for Reconstruction", 2001)

"A conceptual model is a mental image of a system, its components, its interactions. It lays the foundation for more elaborate models, such as physical or numerical models. A conceptual model provides a framework in which to think about the workings of a system or about problem solving in general. An ensuing operational model can be no better than its underlying conceptualization." (Henry N Pollack, "Uncertain Science … Uncertain World", 2005)

"[...] a single thing may elicit several appearances, various conceptual models of it, or several plans of action for it, depending on the subject’s abilities and interests." (Mario Bunge, "Chasing Reality: Strife over Realism", 2006)

"Although fiction is not fact, paradoxically we need some fictions, particularly mathematical ideas and highly idealized models, to describe, explain, and predict facts.  This is not because the universe is mathematical, but because our brains invent or use refined and law-abiding fictions, not only for intellectual pleasure but also to construct conceptual models of reality." (Mario Bunge, "Chasing Reality: Strife over Realism", 2006)

"At all events, our world pictures may have components of all three kinds: perceptual, conceptual, and praxiological (action-theoretical).  This is because there are three gates to the outer world: perception, conception, and action. However, ordinarily only one or two of them need be opened: combinations of all three, as in building a house according to a blueprint, are the exception.  We may contemplate a landscape without forming either a conceptual model of it or a plan to act upon it.  And we may build a theoretical model of an imperceptible thing, such as an invisible extrasolar planet, on which we cannot act." (Mario Bunge, "Chasing Reality: Strife over Realism", 2006)

Related Posts Plugin for WordPress, Blogger...

On Leonhard Euler

"I have been able to solve a few problems of mathematical physics on which the greatest mathematicians since Euler have struggled in va...