Showing posts with label sets. Show all posts
Showing posts with label sets. Show all posts

07 January 2025

On Sets: Definitions

"[a set is] an embodiment of the idea or concept which we conceive when we regard the arrangement of its parts as a matter of indifference." (Bernard Bolzano, 1847)

"By a manifold or a set I understand in general every Many that can be thought of as One, i.e., every collection of determinate elements which can be bound up into a whole through a law, and with this I believe to define something that is akin to the Platonic εἷδος [form] or ἷδεα [idea]." (Georg Cantor, "Grundlagen einer allgemeinen Mannigfaltigkeitslehre", 1883)

"A set is formed by the grouping together of single objects into a whole. A set is a plurality thought of as a unit. If these or similar statements were set down as definitions, then it could be objected with good reason that they define idem per idemi or even obscurum per obscurius. However, we can consider them as expository, as references to a primitive concept, familiar to us all, whose resolution into more fundamental concepts would perhaps be neither competent nor necessary." (Felix Hausdorff, "Set Theory", 1962)

"Set theory is concerned with abstract objects and their relation to various collections which contain them. We do not define what a set is but accept it as a primitive notion. We gain an intuitive feeling for the meaning of sets and, consequently, an idea of their usage from merely listing some of the synonyms: class, collection, conglomeration, bunch, aggregate. Similarly, the notion of an object is primitive, with synonyms element and point. Finally, the relation between elements and sets, the idea of an element being in a set, is primitive." (Richard L Bishop & Samuel I Goldberg, "Tensor Analysis on Manifolds", 1968)

"Unfortunately, we are not in a position to give a rigorous definition of the fundamental concept of the theory : the concept of set. Of course, we could say that a set is a collection, a union, an ensemble, a family, a system, a class, etc. But this would not be a mathematical definition, but rather a misuse of the multitude of words available in the English language." (Naum Ya. Vilenkin, "Stories about Sets", 1968)

"Set theory is unusual in that it deals with remarkably simple but apparently ineffable objects. A set is a collection, a class, an ensemble, a batch, a bunch, a lot, a troop, a tribe. To anyone incapable of grasping the concept of a set, these verbal digressions are apt to be of little help. […] A set may contain finitely many or infinitely many members. For that matter, a set such as {} may contain no members whatsoever, its parentheses vibrating around a mathematical black hole. To the empty set is reserved the symbol Ø, the figure now in use in daily life to signify access denied or don’t go, symbolic spillovers, I suppose, from its original suggestion of a canceled eye." (David Berlinski, "Infinite Ascent: A short history of mathematics", 2005)

"Unlike the classic set theory where a set is represented as an indicator function to specify if an object belongs or not to it, a fuzzy set is an extension of a classic set where a subset is represented as a membership function to characterize the degree that an object belongs to it. The indicator function of a classic set takes value of 1 or 0, whereas the membership function of a fuzzy set takes value between 1 and 0." (Jianchao Han & Nick Cerone, Principles and Perspectives of Granular Computing, 2009) 

"The invariance principle states that the result of counting a set does not depend on the order imposed on its elements during the counting process. Indeed, a mathematical set is just a collection without any implied ordering. A set is the collection of its elements - nothing more." (Alfred S Posamentier & Bernd Thaller, "Numbers: Their tales, types, and treasures", 2015)

"A set is a unity of which its elements are the constituents. It is a fundamental property of the mind to comprehend multitudes into unities. Sets are multitudes which are also unities. A multitude is the opposite of a unity. How can anything be both a multitude and a unity? Yet a set is just that. It is a seemingly contradictory fact that sets exist. It is surprising that the fact that multitudes are also unities leads to no contradictions: this is the main fact of mathematics. Thinking a plurality together seems like a triviality: and this appears to explain why we have no contradiction. But 'many things for one' is far from trivial." (Kurt Gödel)

"A set is a Many that allows itself to be thought of as a One." (Georg Cantor)

29 August 2021

On Continuity III (Sets)

"Things [...] are some of them continuous [...] which are properly and peculiarly called 'magnitudes'; others are discontinuous, in a side-by-side arrangement, and, as it were, in heaps, which are called 'multitudes,' a flock, for instance, a people, a heap, a chorus, and the like. Wisdom, then, must be considered to be the knowledge of these two forms. Since, however, all multitude and magnitude are by their own nature of necessity infinite - for multitude starts from a definite root and never ceases increasing; and magnitude, when division beginning with a limited whole is carried on, cannot bring the dividing process to an end [...] and since sciences are always sciences of limited things, and never of infinites, it is accordingly evident that a science dealing with magnitude [...] or with multitude [...] could never be formulated. […] A science, however, would arise to deal with something separated from each of them, with quantity, set off from multitude, and size, set off from magnitude." (Nicomachus, cca. 100 AD)

"Well, since paradoxes are at hand, let us see how it might be demonstrated that in a finite continuous extension it is not impossible for infinitely many voids to be found." (Galileo Galilei, "Dialogue Concerning the Two Chief World Systems", 1632)

"The above comparison of the domain R of rational numbers with a straight line has led to the recognition of the existence of gaps, of a certain incompleteness or discontinuity of the former, while we ascribe to the straight line completeness, absence of gaps, or continuity. In what then does this continuity consist? Everything must depend on the answer to this question, and only through it shall we obtain a scientific basis for the investigation of all continuous domains." (Richard Dedekind,"Stetigkeit und irrationale Zahle", 1872) 

"It seems clear that [set theory] violates against the essence of the continuum, which, by its very nature, cannot at all be battered into a single set of elements. Not the relationship of an element to a set, but of a part to a whole ought to be taken as a basis for the analysis of a continuum." (Hermann Weyl, "Riemanns geometrische Ideen, ihre Auswirkungen und ihre Verknüpfung mit der Gruppentheorie", 1925)

"But, despite their remoteness from sense experience, we do have something like a perception of the objects of set theory, as is seen from the fact that the axioms force themselves upon us as being true. I don't see any reason why we should have less confidence in this kind of perception, i.e., in mathematical intuition, than in sense perception, which induces us to build up physical theories and to expect that future sense perception will agree with them and, moreover, to believe that a question not decidable now has meaning and may be decided in future." (Kurt Gödel, "What is Cantor’s Continuum problem?", American Mathematical Monthly 54, 1947)

"Topology begins where sets are implemented with some cohesive properties enabling one to define continuity." (Solomon Lefschetz, "Introduction to Topology", 1949)

"A fuzzy set is a class of objects with a continuum of grades of membership. Such a set is characterized by a membership (characteristic) function which assigns to each object a grade of membership ranging between zero and one. The notions of inclusion, union, intersection, complement, relation, convexity, etc., are extended to such sets, and various properties of these notions in the context of fuzzy sets are established. In particular, a separation theorem for convex fuzzy sets is proved without requiring that the fuzzy sets be disjoint." (Lotfi A Zadeh, "Fuzzy Sets", 1965)

"In abstract mathematics, special attention is given to particular properties of numbers. Then those properties are taken in a very pure (and primitive) form. Those properties in pure form are then assigned to a given set. Therefore, by studying in details the internal mathematical structure of a set, we should be able to clarify the meaning of original properties of the objects. Likewise, in set theory, numbers disappear and only the concept of sets and characteristic properties of sets remain." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"In view of the developments of abstract mathematics, the first thing mathematicians studied was how to extract the property of 'nearness' from the set of numbers. If the property of nearness could be extracted using a few axioms, and if it was possible to associate the extracted property with a set, then the resulting set would provide an abstract scene to study 'nearness'." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"Today, most mathematicians have embraced the axiom of choice because of the order and simplicity it brings to mathematics in general. For example, the theorems that every vector space has a basis and every field has an algebraic closure hold only by virtue of the axiom of choice. Likewise, for the theorem that every sequentially continuous function is continuous. However, there are special places where the axiom of choice actually brings disorder. One is the theory of measure." (John Stillwell, "Roads to Infinity: The mathematics of truth and proof", 2010) 

03 July 2021

Naum Ya. Vilenkin - Collected Quotes

"But, really, mathematics is not religion; it cannot be founded on faith. And what was most important, the methods yielding such remarkable results in the hands of the great masters began to lead to errors and paradoxes when employed by their less talented students. The masters were kept from error by their perfect mathematical intuition, that subconscious feeling that often leads to the right answer more quickly than lengthy logical reasoning. But the students did not possess this intuition […]"(Naum Ya. Vilenkin, "Stories about Sets", 1968) 

"In order to define a concept we have to indicate first of all that it is a special case of a more general concept. This is impossible for the concept of set, since this concept is already as broad as possible and is thus not a special case of any other concept." (Naum Ya. Vilenkin, "Stories about Sets", 1968)

"In practice, let us note, the determination of sets by means of characterizing criteria runs into difficulty because of the ambiguity of our language. The task of separating the objects belonging to a set from those that do not is often made difficult by the large number of objects of intermediate type." (Naum Ya. Vilenkin, "Stories about Sets", 1968)

"Infinite sets possess remarkable properties. In studying these properties mathematicians were led to continually perfect their reasoning and to further develop mathematical logic." (Naum Ya. Vilenkin, "Stories about Sets", 1968)

"It would not be an exaggeration to say that all of mathematics derives from the concept of infinity. In mathematics, as a rule, we are not interested in individual objects (numbers, geometric figures), but in whole classes of such objects: all natural numbers, all triangles, and so on. But such a collection consists of an infinite number of individual objects." (Naum Ya. Vilenkin, "Stories about Sets", 1968)

"Many examples occur in the theory of sets in which the definition of the set is self-contradictory. The study of the question of the conditions under which this takes place leads to deep questions of logic. Consideration of these questions has completely changed the face of the subject." (Naum Ya. Vilenkin, "Stories about Sets", 1968)

"[…] mathematicians and philosophers have always been interested in the concept of infinity. This interest arose at the very moment when it became clear that each natural number has a successor, i.e., that the number sequence is infinite. However, even the first attempts to cope with infinity lead to numerous paradoxes." (Naum Ya. Vilenkin, "Stories about Sets", 1968)

"The very name 'set' leads us to think that any set must contain many elements (at least two). But this is not the case. In mathematics it is sometimes necessary to examine sets having only one element and sometimes even a set having no elements at all." (Naum Ya. Vilenkin, "Stories about Sets", 1968)

"Two kinds of sets turn up in geometry. First of all, in geometry we ordinarily talk about the properties of some set of geometric figures. For example, the theorem stating that the diagonals of a parallelogram bisect each other relates to the set of all parallelograms. Secondly, the geometric figures are themselves sets composed of the points occurring within them. We can therefore speak of the set of all points contained within a given circle, of the set of all points within a given cone, etc." (Naum Ya. Vilenkin, "Stories about Sets", 1968)

"Unfortunately, we are not in a position to give a rigorous definition of the fundamental concept of the theory : the concept of set. Of course, we could say that a set is a collection, a union, an ensemble, a family, a system, a class, etc. But this would not be a mathematical definition, but rather a misuse of the multitude of words available in the English language." (Naum Ya. Vilenkin, "Stories about Sets", 1968)

07 April 2021

On Axioms (2000-2009)

"Mathematics is not placid, static and eternal. […] Most mathematicians are happy to make use of those axioms in their proofs, although others do not, exploring instead so-called intuitionist logic or constructivist mathematics. Mathematics is not a single monolithic structure of absolute truth!" (Gregory J Chaitin, "A century of controversy over the foundations of mathematics", 2000)

"We start from vague pictures or ideas […] which we encapsulate by rules, and then we discover that those rules persuade us to modify our mental images. We engage in a dialog between our mental images and our ability to justify them via equations. As we understand what we are investigating more clearly, the pictures become sharper and the equations more elaborate. Only at the end of the process does anything like a formal set of axioms followed by logical proofs" (E Brian Davies, "Science in the Looking Glass", 2003)

"A recurring concern has been whether set theory, which speaks of infinite sets, refers to an existing reality, and if so how does one ‘know’ which axioms to accept. It is here that the greatest disparity of opinion exists (and the greatest possibility of using different consistent axiom systems)." (Paul Cohen, "Skolem and pessimism about proof in mathematics". Philosophical Transactions of the Royal Society A 363 (1835), 2005)

"An axiomatic theory starts out of some primitive (undefined) concepts and out of a set of primitive propositions, the theory’s axioms or postulates. Other concepts are obtained by definition from the primitive concepts and from defined concepts; theorems of the theory are derived by proof mechanisms out of the axioms." (Cristian S Calude, "Randomness & Complexity, from Leibniz to Chaitin", 2007)

"Human language is a vehicle of truth but also of error, deception, and nonsense. Its use, as in the present discussion, thus requires great prudence. One can improve the precision of language by explicit definition of the terms used. But this approach has its limitations: the definition of one term involves other terms, which should in turn be defined, and so on. Mathematics has found a way out of this infinite regression: it bypasses the use of definitions by postulating some logical relations (called axioms) between otherwise undefined mathematical terms. Using the mathematical terms introduced with the axioms, one can then define new terms and proceed to build mathematical theories. Mathematics need, not, in principle rely on a human language. It can use, instead, a formal presentation in which the validity of a deduction can be checked mechanically and without risk of error or deception." (David Ruelle, "The Mathematician's Brain", 2007)

"If you have the rules of deduction and some initial choice of statements as sumed to be true (called axioms), then you are ready to derive many more true statements (called theorems). The rules of deduc tion constitute the logical machinery of mathematics, and the axioms comprise the basic properties of the objects you are interested in (in geometry these may be points, line segments, angles, etc.). There is some flexibility in selecting the rules of deduction, and many choices of axioms are possible. Once these have been decided you have all you need to do mathematics." (David Ruelle, "The Mathematician's Brain", 2007)

"In mathematics, the first principles are called axioms, and the rules are referred to as deduction/inference rules. A proof is a series of steps based on the (adopted) axioms and deduction rules which reaches a desired conclusion. Every step in a proof can be checked for correctness by examining it to ensure that it is logically sound." (Cristian S Calude et al, "Proving and Programming", 2007)

"Mathematics as done by mathematicians is not just heaping up statements logically deduced from the axioms. Most such statements are rubbish, even if perfectly correct. A good mathematician will look for interesting results. These interesting results, or theorems, organize themselves into meaningful and natural structures, and one may say that the object of mathematics is to find and study these structures." (David Ruelle, "The Mathematician's Brain", 2007)

"Reducing theorems to a small number of axioms turns out to be deeply reminiscent of what scientists do. The mark of a good scientific theory, after all, is that it describes a large number of observations of the world while making only a small number of assumptions." (Marcus Chown, "God’s Number: Where Can We Find the Secret of the Universe? In a Single Number!", 2007)

"The fact that we have an efficient conceptualization of mathematics shows that this reflects a certain mathematical reality, even if this reality is quite invisible in the formal listing of the axioms of set theory." (David Ruelle, "The Mathematician's Brain", 2007)

"We axiomatize a theory not only to better understand its inner workings but also in order to obtain metatheorems about that theory. We will therefore be interested in, say, proving that a given axiomatic treatment for some physical theory is incomplete (that is, the system exhibits the incompleteness phenomenon), among other things." (Cristian S Calude, "Randomness & Complexity, from Leibniz to Chaitin", 2007)

"When we introduce the concept of a group, we do this by imposing certain properties that should hold: these properties are called axioms. The axioms defining a group are, however, of a somewhat different nature from the ZFC axioms of set theory. Basically, whenever we do mathematics, we accept ZFC: a current mathematical paper systematically uses well-known consequences of ZFC (and normally does not mention ZFC). The axioms of a group by contrast are used only when appropriate." (David Ruelle, "The Mathematician's Brain", 2007)

"Why are proofs so important? Suppose our task were to construct a building. We would start with the foundations. In our case these are the axioms or definitions - everything else is built upon them. Each theorem or proposition represents a new level of knowledge and must be firmly anchored to the previous level. We attach the new level to the previous one using a proof. So the theorems and propositions are the new heights of knowledge we achieve, while the proofs are essential as they are the mortar which attaches them to the level below. Without proofs the structure would collapse." (Sidney A Morris, "Topology without Tears", 2007)

06 April 2021

Set Theory III

"One very important genus of complex ideas that we encounter everywhere are those in which the idea of collection (Inbegriff ) appears. There are many types of the latter [...] I must first determine with more precision the concept I associate with the word collection. I use this word in the same sense as it is used in the common usage and thus understand by a collection of certain things exactly the same as what one would express by the words: a combination (Verbindung) or association (Vereinigung) of these things, a gathering (Zusammensein) of the latter, a whole (Ganzes) in which they occur as parts (Teile). Hence the mere idea of a collection does not allow us to determine in which order and sequence the things that are put together appear or, indeed, whether there is or can be such an order. [...] A collection, it seems to me, is nothing other than something complex (das Zusammengesetztheit hat)." (Bernard Bolzano, "Wissenschaftslehre" ["Theory of Science"], 1837)

"The old and oft-repeated proposition 'Totum est majus sua parte' [the whole is larger than the part] may be applied without proof only in the case of entities that are based upon whole and part; then and only then is it an undeniable consequence of the concepts 'totum' and 'pars'. Unfortunately, however, this 'axiom' is used innumerably often without any basis and in neglect of the necessary distinction between 'reality' and 'quantity' , on the one hand, and 'number' and 'set', on the other, precisely in the sense in which it is generally false." (Georg Cantor, "Über unendliche, lineare Punktmannigfaltigkeiten", Mathematische Annalen 20, 1882)

"The foregoing account of my researches in the theory of manifolds has reached a point where further progress depends on extending the concept of true integral number beyond the previous boundaries; this extension lies in a direction which, to my knowledge, no one has yet attempted to explore.
My dependence on this extension of number concept is so great, that without it I should be unable to take freely the smallest step further in the theory of sets." (Georg Cantor, "Grundlagen einer allgemeinen Mannigfaltigkeitslehre", 1883) 

"To the thought of considering the infinitely great not merely in the form of what grows without limits - and in the closely related form of the convergent infinite series first introduced in the seventeenth century-, but also fixing it mathematically by numbers in the determinate form of the completed-infinite, I have been logically compelled in the course of scientific exertions and attempts which have lasted many years, almost against my will, for it contradicts traditions which had become precious to me; and therefore I believe that no arguments can be made good against it which I would not know how to meet." (Georg Cantor, "Grundlagen einer allgemeinen Mannigfaltigkeitslehre", 1883)

"Every mathematician agrees that every mathematician must know some set theory; the disagreement begins in trying to decide how much is some. [...] The student's task in learning set theory is to steep himself in unfamiliar but essentially shallow generalities till they become so familiar that they can be used with almost no conscious effort. In other words, general set theory is pretty trivial stuff really, but, if you want to be a mathematician, you need some, and here it is; read it, absorb it, and forget it [...] the language and notation are those of ordinary informal mathematics. A more important way in which the naive point of view predominates is that set theory is regarded as a body of facts, of which the axioms are a brief and convenient summary; in the orthodox axiomatic view the logical relations among various axioms are the central objects of study." (Paul R Halmos, "Naive Set Theory", 1960)

"A manifold, roughly, is a topological space in which some neighborhood of each point admits a coordinate system, consisting of real coordinate functions on the points of the neighborhood, which determine the position of points and the topology of that neighborhood; that is, the space is locally cartesian. Moreover, the passage from one coordinate system to another is smooth in the overlapping region, so that the meaning of 'differentiable' curve, function, or map is consistent when referred to either system." (Richard L Bishop & Samuel I Goldberg, "Tensor Analysis on Manifolds", 1968)

"Set theory is concerned with abstract objects and their relation to various collections which contain them. We do not define what a set is but accept it as a primitive notion. We gain an intuitive feeling for the meaning of sets and, consequently, an idea of their usage from merely listing some of the synonyms: class, collection, conglomeration, bunch, aggregate. Similarly, the notion of an object is primitive, with synonyms element and point. Finally, the relation between elements and sets, the idea of an element being in a set, is primitive." (Richard L Bishop & Samuel I Goldberg, "Tensor Analysis on Manifolds", 1968)

"The mathematical models for many physical systems have manifolds as the basic objects of study, upon which further structure may be defined to obtain whatever system is in question. The concept generalizes and includes the special cases of the cartesian line, plane, space, and the surfaces which are studied in advanced calculus. The theory of these spaces which generalizes to manifolds includes the ideas of differentiable functions, smooth curves, tangent vectors, and vector fields. However, the notions of distance between points and straight lines (or shortest paths) are not part of the idea of a manifold but arise as consequences of additional structure, which may or may not be assumed and in any case is not unique." (Richard L Bishop & Samuel I Goldberg, "Tensor Analysis on Manifolds", 1968)

"Does set theory, once we get beyond the integers, refer to an existing reality, or must it be regarded, as formalists would regard it, as an interesting formal game? [...] A typical argument for the objective reality of set theory is that it is obtained by extrapolation from our intuitions of finite objects, and people see no reason why this has less validity. Moreover, set theory has been studied for a long time with no hint of a contradiction. It is suggested that this cannot be an accident, and thus set theory reflects an existing reality. In particular, the Continuum Hypothesis and related statements are true or false, and our task is to resolve them." (Paul Cohen, "Skolem and pessimism about proof in mathematics", Philosophical Transactions of the Royal Society A 363 (1835), 2005)

"In each branch of mathematics it is essential to recognize when two structures are equivalent. For example two sets are equivalent, as far as set theory is concerned, if there exists a bijective function which maps one set onto the other. Two groups are equivalent, known as isomorphic, if there exists a a homomorphism of one to the other which is one-to-one and onto. Two topological spaces are equivalent, known as homeomorphic, if there exists a homeomorphism of one onto the other." (Sydney A Morris, "Topology without Tears", 2011)

07 February 2021

On Fractals II

"A fractal is a mathematical set or concrete object that is irregular or fragmented at all scales [...]" (Benoît Mandelbrot, "The Fractal Geometry of Nature", 1982)

"A fractal is by definition a set for which the Hausdorff-Besicovitch dimension strictly exceeds the topological dimension." (Benoît Mandelbrot, "The Fractal Geometry of Nature", 1982)

"In the mind's eye, a fractal is a way of seeing infinity." (James Gleick, "Chaos: Making a New Science, A Geometry of Nature", 1987)

"One reason nature pleases us is its endless use of a few simple principles: the cube-square law; fractals; spirals; the way that waves, wheels, trig functions, and harmonic oscillators are alike; the importance of ratios between small primes; bilateral symmetry; Fibonacci series, golden sections, quantization, strange attractors, path-dependency, all the things that show up in places where you don’t expect them [...] these rules work with and against each other ceaselessly at all levels, so that out of their intrinsic simplicity comes the rich complexity of the world around us. That tension - between the simple rules that describe the world and the complex world we see - is itself both simple in execution and immensely complex in effect. Thus exactly the levels, mixtures, and relations of complexity that seem to be hardwired into the pleasure centers of the human brain - or are they, perhaps, intrinsic to intelligence and perception, pleasant to anything that can see, think, create? - are the ones found in the world around us." (John Barnes, "Mother of Storms", 1994)

"We are approaching a more fluid state. I have talked about cultural boiling. The idea of the phase-transition period which, in fractal mathematics, is the chaotic flux between one state and another. [...] Culturally, and as a species, we are approaching a phase-transition. I don’t know quite what that means, on a human level." (Alan Moore, [interview], 1998)

"If financial markets aren't efficient, then what are they? According to the 'fractal market hypothesis', they are highly unstable dynamic systems that generate stock prices which appear random, but behind which lie deterministic patterns." (Steve Keen, "Debunking Economics: The Naked Emperor Of The Social Sciences", 2001)

"Do I claim that everything that is not smooth is fractal? That fractals suffice to solve every problem of science? Not in the least. What I'm asserting very strongly is that, when some real thing is found to be un-smooth, the next mathematical model to try is fractal or multi-fractal. A complicated phenomenon need not be fractal, but finding that a phenomenon is 'not even fractal' is bad news, because so far nobody has invested anywhere near my effort in identifying and creating new techniques valid beyond fractals. Since roughness is everywhere, fractals - although they do not apply to everything - are present everywhere. And very often the same techniques apply in areas that, by every other account except geometric structure, are separate." (Benoît Mandelbrot, "A Theory of Roughness", 2004) 

"Only at the edge of chaos can complex systems flourish. This threshold line, that edge between anarchy and frozen rigidity, is not a like a fence line, it is a fractal line; it possesses nonlinearity." (Stephen H Buhner, "Plant Intelligence and the Imaginal Realm: Beyond the Doors of Perception into the Dreaming of Earth", 2014)

[fractal:] "A fragmented geometric shape that can be split up into secondary pieces, each of which is approximately a smaller replica of the whole, the phenomenon commonly known as self similarity." (Khondekar et al, "Soft Computing Based Statistical Time Series Analysis, Characterization of Chaos Theory, and Theory of Fractals", 2013)

"If you have a hammer, use it everywhere you can, but I do not claim that everything is fractal." (Benoît Mandelbrot)

25 January 2021

On Continuity I (Calculus)

"Since [...] nature is a principle of motion and mutation [...] it is necessary that we should not be ignorant of what motion is [...] But motion appears to belong to things continuous; and the infinite first presents itself to the view in that which is continuous. [..] frequently [...] those who define the continuous, employ the nature or the infinite, as if that which is divisible to infinity is continuous." (Aristotle, "Physics", cca. 350 BC)

"Things [...] are some of them continuous [...] which are properly and peculiarly called 'magnitudes'; others are discontinuous, in a side-by-side arrangement, and, as it were, in heaps, which are called 'multitudes,' a flock, for instance, a people, a heap, a chorus, and the like. Wisdom, then, must be considered to be the knowledge of these two forms. Since, however, all multitude and magnitude are by their own nature of necessity infinite - for multitude starts from a definite root and never ceases increasing; and magnitude, when division beginning with a limited whole is carried on, cannot bring the dividing process to an end [...] and since sciences are always sciences of limited things, and never of infinites, it is accordingly evident that a science dealing with magnitude [...] or with multitude [...] could never be formulated. […] A science, however, would arise to deal with something separated from each of them, with quantity, set off from multitude, and size, set off from magnitude." (Nicomachus, cca. 100 AD) 

"Since the nature of differentials […] consists in their being infinitely small and infinitely changeable up to zero, in being only quantitates evanescentes, evanescentia divisibilia, they will be always smaller than any given quantity whatsoever. In fact, some difference which one can assign between two magnitudes which only differ by a differential, the continuous and imperceptible variability of that infinitely small differential, even at the very point of becoming zero, always allows one to find a quantity less than the proposed difference." (Johann Bernoulli, cca. 1692–1702)

"There are two famous labyrinths where our reason very often goes astray. One concerns the great question of the free and the necessary, above all in the production and the origin of Evil. The other consists in the discussion of continuity, and of the indivisibles which appear to be the elements thereof, and where the consideration of the infinite must enter in." (Gottfried W Leibniz, "Theodicy: Essays on the Goodness of God and Freedom of Man and the Origin of Evil", 1710)

"Every quantity which, keeping the same expression, increases or diminishes continually (non per saltum), is called a variable, and that which, with the same expression, keeps the same value, is called fixed or constant." (Pierre Varignon, "Eclaircissemens sur l'Analyse des Infinimens Petits", 1725)

"In fact, a similar principle of hardness cannot exist; it is a chimera which offends that general law which nature constantly observes in all its operations; I speak of that immutable and perpetual order, established since the creation of the Universe, that can be called the LAW OF CONTINUITY, by virtue of which everything that takes place, takes place by infinitely small degrees. It seems that common sense dictates that no change can take place at a jump; natura non operatur per saltion; nothing can pass from one extreme to the other without passing through all the degrees in between." (Johann Bernoulli, "Discours sur les Loix de la Communication du Mouvement", 1727)

"The Law of Continuity, as we here deal with it, consists in the idea that [...] any quantity, in passing from one magnitude to another, must pass through all intermediate magnitudes of the same class. The same notion is also commonly expressed by saying that the passage is made by intermediate stages or steps; [...] the idea should be interpreted as follows: single states correspond to single instants of time, but increments or decrements only to small areas of continuous time." (Roger J Boscovich, "Philosophiae Naturalis Theoria Redacta Ad Unicam Legera Virium in Natura Existentium", 1758)

"Any change involves at least two conditions, one preceding and one following, which are distinct from one another in such a way that the difference between the former and the latter can be established. Now the law of continuity prohibits the thing which is being changed to transcend abruptly from the former to the latter. It must pass through an intermediate condition which is as little distinct from the previous as from the subsequent one. And because the difference between this intermediate condition and the previous condition can be established still, there must be an intermediate condition between these two as well, and this must continue in the same way, until the difference between the previous condition and the one immediately succeeding it vanishes. As long as the set of these intermediate conditions can be established, every difference between one and the next can be established as well: hence their set must become larger than any given set if these differences shall vanish, and thus we imagine infinitely many conditions where one differs from the next to an infinitely small degree." (Abraham G Kästner, "Anfangsgründe der Analysis des Unendlichen" [Beginnings of the Analysis of the Infinite"], 1766)

"It is held because of this law in particular, that no change may occur suddenly, but rather that every change always passes by infinitely small stages, of which the trajectory of a point in a curved line provides a first example." (Abraham G Kästner, "Anfangsgründe der Analysis des Unendlichen" ["Beginnings of the Analysis of the Infinite"], 1766)

"Whoever wishes to extend this law [of continuity] to the real must justify his inferences by a law other than that, the suspicion remaining that he took images for things." (Abraham G Kästner, "Anfangsgründe der Analysis des Unendlichen" ["Beginnings of the Analysis of the Infinite"], 1766)

"[continuity] could be only appearance, and in this case Euler’s entire argument against the atoms would disappear; for one would be justified to apply the law of continuity only where experience shows that it agrees with the phenomena. [...]. The law of continuity thus belongs to the clothes of things which we must need rely on wherever reality seems impenetrably cloaked with it, but which we do not consider to be reality itself, and which we may still less cloak with things which do not serve us to see them." (Johann S T Gehler, "Physikalisches Wörterbuch" Bd. 4, 1798)

"Logic sometimes makes monsters. For half a century we have seen a mass of bizarre functions which appear to be forced to resemble as little as possible honest functions which serve some purpose. More of continuity, or less of continuity, more derivatives, and so forth. Indeed, from the point of view of logic, these strange functions are the most general; on the other hand those which one meets without searching for them, and which follow simple laws appear as a particular case which does not amount to more than a small corner. In former times when one invented a new function it was for a practical purpose; today one invents them purposely to show up defects in the reasoning of our fathers and one will deduce from them only that. If logic were the sole guide of the teacher, it would be necessary to begin with the most general functions, that is to say with the most bizarre. It is the beginner that would have to be set grappling with this teratologic museum." (Henri Poincaré, 1899)

"The Calculus required continuity, and continuity was supposed to require the infinitely little; but nobody could discover what the infinitely little might be." (Bertrand Russell, "Mysticism and Logic and Other Essays", cca. 1910)

"The course of the values of a continuous function is determined at all points of an interval, if only it is determined for all rational points of this interval." (Felix Klein, "Elementary Mathematics from a Higher Standpoint" Vol III: "Precision Mathematics and Approximation Mathematics", 1928)

"A common and very powerful constraint is that of continuity. It is a constraint because whereas the function that changes arbitrarily can undergo any change, the continuous function can change, at each step, only to a neighbouring value." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"As a simple trick, the discrete can often be carried over into the continuous, in a way suitable for practical purposes, by making a graph of the discrete, with the values shown as separate points. It is then easy to see the form that the changes will take if the points were to become infinitely numerous and close together." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"The mathematical theory of continuity is based, not on intuition, but on the logically developed theories of number and sets of points." (Carl B Boyer, "The History of the Calculus and Its Conceptual Development", 1959)

"Analysis is primarily concerned with limit processes and continuity, so it is not surprising that mathematicians thinking along these lines soon found themselves studying (and generalizing) two elementary concepts: that of a convergent sequence of real or complex numbers, and that of a continuous function of a real or complex variable." (George F Simmons, "Introduction to Topology and Modern Analysis", 1963)

"Continuous functions can move freely. Graphs of continuous functions can freely branch off at any place, whereas analytic functions coinciding in some neighborhood of a point P cannot branch outside of this neighborhood. Because of this property, continuous functions can mathematically represent wildly changing wind inside a typhoon or a gentle breeze." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"If we know when a sequence approaches a point or, as we say, converges to a point, we can define a continuous mapping from one metric space to another by using the property that a converging sequence is mapped to the corresponding converging sequence." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"Intuitively speaking, a visual representation associated with the concept of continuity is the property that a near object is sent to a corresponding near object, that is, a convergent sequence is sent to a corresponding convergent sequence." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"If you assume continuity, you can open the well-stocked mathematical toolkit of continuous functions and differential equations, the saws and hammers of engineering and physics for the past two centuries (and the foreseeable future)." (Benoît Mandelbrot, "The (Mis)Behaviour of Markets: A Fractal View of Risk, Ruin and Reward", 2004)

"Continuity is the rigorous formulation of the intuitive concept of a function that varies with no abrupt breaks or jumps. A function is a relationship in which every value of an independent variable - say x - is associated with a value of a dependent variable - say y. Continuity of a function is sometimes expressed by saying that if the x-values are close together, then the y-values of the function will also be close. But if the question 'How close?' is asked, difficulties arise." (Erik Gregersen [Ed.], "Math Eplained: The Britannica Guide to Analysis and Calculus", 2011)

30 November 2020

Set Theory II

"[...] from that circumstance alone we are not allowed to conclude that both sets, if they are infinite, are equal to each other with respect to the multiplicity of their parts (that is, if we abstract from all differences between them); [...] Equality of those multiplicities can only be inferred when some other reason is added, for instance that both sets have absolutely equal grounds of determination, i.e., that their mode of formation is absolutely equal." (Bernard Bolzano, "Paradoxien des Unedlichen", 1851)

"If two well-defined manifolds M and N can be coordinated with each other univocally and completely, element by element (which, if possible in one way, can always happen in many others), we shall employ in the sequel the expression, that those manifolds have the same power or, also, that they are equivalent." (Georg Cantor, "Ein Beitrag zur Mannigfaltigkeitslehre", 1878)

"I say that a manifold (a collection, a set) of elements that belong to any conceptual sphere is well-defined, when on the basis of its definition and as a consequence of the logical principle of excluded middle it must be regarded as internally determined, both whether an object pertaining to the same conceptual sphere belongs or not as an element to the manifold, and whether two objects belonging to the set are equal to each other or not, despite formal differences in the ways of determination." (Georg Cantor, "Ober unendliche, lineare Punktmannichfaltigkeiten", 1879)

"By a manifold or a set I understand in general every Many that can be thought of as One, i.e., every collection of determinate elements which can be bound up into a whole through a law, and with this I believe to define something that is akin to the Platonic εἷδος [form] or ἷδεα [idea]." (Georg Cantor, "Grundlagen einer allgemeinen Mannigfaltigkeitslehre", 1883) 

"If we now notice that all of the numbers previously obtained and their next successors fulfill a certain condition, [that the set of their predecessors is denumerable,] then this condition offers itself, if it is imposed as a requirement on all numbers to be formed next, as a new third principle [...] which I shall call principle of restriction or limitation and which, as I shall show, yields the result that the second number-class (II) defined with its assistance not only has a higher power than [the first number-class] (I), but precisely the next higher, that is, the second power." (Georg Cantor, "Grundlagen einer allgemeinen Mannigfaltigkeitslehre", 1883) 

"In calling arithmetic (algebra, analysis) just a part of logic, I declare already that I take the number-concept to be completely independent of the ideas or intuitions of space and time, that I see it as an immediate product of the pure laws of thought." (Richard Dedekind, "Was sind und was sollen die Zahlen?", 1888)

"A set is formed by the grouping together of single objects into a whole. A set is a plurality thought of as a unit. If these or similar statements were set down as definitions, then it could be objected with good reason that they define idem per idemi or even obscurum per obscurius. However, we can consider them as expository, as references to a primitive concept, familiar to us all, whose resolution into more fundamental concepts would perhaps be neither competent nor necessary." (Felix Hausdorff, "Set Theory", 1962)

"The axiom of choice has many important consequences in set theory. It is used in the proof that every infinite set has a denumerable subset, and in the proof that every set has at least one well-ordering. From the latter, it follows that the power of every set is an aleph. Since any two alephs are comparable, so are any two transfinite powers of sets. The axiom of choice is also essential in the arithmetic of transfinite numbers." (R Bunn, "Developments in the Foundations of Mathematics, 1870-1910", 1980)

"A set is a Many that allows itself to be thought of as a One." (Georg Cantor)

"An infinite set is one that can be put into a one-to-one correspondence with a proper subset of itself." (Georg Cantor)

Set Theory I

"[a set is] an embodiment of the idea or concept which we conceive when we regard the arrangement of its parts as a matter of indifference." (Bernard Bolzano, 1847)

"Since the examination of consistency is a task that cannot be avoided, it appears necessary to axiomatize logic itself and to prove that number theory and set theory are only parts of logic. This method was prepared long ago (not least by Frege’s profound investigations); it has been most successfully explained by the acute mathematician and logician Russell. One could regard the completion of this magnificent Russellian enterprise of the axiomatization of logic as the crowning achievement of the work of axiomatization as a whole." (David Hilbert, "Axiomatisches Denken" ["Axiomatic Thinking"], [address] 1917)

"It seems clear that [set theory] violates against the essence of the continuum, which, by its very nature, cannot at all be battered into a single set of elements. Not the relationship of an element to a set, but of a part to a whole ought to be taken as a basis for the analysis of a continuum." (Hermann Weyl, "Reimanns geometrische Ideen, ihre Auswirkungen und ihre Verknüpfung mit der Gruppentheorie", 1925)

"To say that mathematics in general has been reduced to logic hints at some new firming up of mathematics at its foundations. This is misleading. Set theory is less settled and more conjectural than the classical mathematical superstructure than can be founded upon it." (Willard van Orman Quine, "Elementary Logic", 1941)

"The emphasis on mathematical methods seems to be shifted more towards combinatorics and set theory - and away from the algorithm of differential equations which dominates mathematical physics." (John von Neumann & Oskar Morgenstern, "Theory of Games and Economic Behavior", 1944)

"But, despite their remoteness from sense experience, we do have something like a perception of the objects of set theory, as is seen from the fact that the axioms force themselves upon us as being true. I don't see any reason why we should have less confidence in this kind of perception, i.e., in mathematical intuition, than in sense perception, which induces us to build up physical theories and to expect that future sense perception will agree with them and, moreover, to believe that a question not decidable now has meaning and may be decided in future." (Kurt Gödel, "What is Cantor’s Continuum problem?", American Mathematical Monthly 54, 1947)

"Categorical algebra has developed in recent years as an effective method of organizing parts of mathematics. Typically, this sort of organization uses notions such as that of the category G of all groups. [...] This raises the problem of finding some axiomatization of set theory - or of some foundational discipline like set theory - which will be adequate and appropriate to realizing this intent. This problem may turn out to have revolutionary implications vis-`a-vis the accepted views of the role of set theory." (Saunders Mac Lane, "Categorical algebra and set-theoretic foundations", 1967)

"In set theory, perhaps more than in any other branch of mathematics, it is vital to set up a collection of symbolic abbreviations for various logical concepts. Because the basic assumptions of set theory are absolutely minimal, all but the most trivial assertions about sets tend to be logically complex, and a good system of abbreviations helps to make otherwise complex statements."  (Keith Devlin, "Sets, Functions, and Logic: An Introduction to Abstract Mathematics", 1979)

"Set theory is peculiarly important [...] because mathematics can be exhibited as involving nothing but set-theoretical propositions about set-theoretical entities." (David M Armstrong, "A Combinatorial Theory of Possibility", 1989)

"At the basis of the distance concept lies, for example, the concept of convergent point sequence and their defined limits, and one can, by choosing these ideas as those fundamental to point set theory, eliminate the notions of distance." (Felix Hausdorff)

24 November 2020

Lotfi A Zadeh - Collected Quotes

"A fuzzy set is a class of objects with a continuum of grades of membership. Such a set is characterized by a membership (characteristic) function which assigns to each object a grade of membership ranging between zero and one. The notions of inclusion, union, intersection, complement, relation, convexity, etc., are extended to such sets, and various properties of these notions in the context of fuzzy sets are established. In particular, a separation theorem for convex fuzzy sets is proved without requiring that the fuzzy sets be disjoint." (Lotfi A Zadeh, "Fuzzy Sets", 1965)

"The notion of a fuzzy set provides a convenient point of departure for the construction of a conceptual framework which parallels in many respects the framework used in the case of ordinary sets, but is more general than the latter and, potentially, may prove to have a much wider scope of applicability, particularly in the fields of pattern classification and information processing. Essentially, such a framework provides a natural way of dealing with problems in which the source of imprecision is the absence of sharply denned criteria of class membership rather than the presence of random variables." (Lotfi A Zadeh, "Fuzzy Sets", 1965)

"In general, complexity and precision bear an inverse relation to one another in the sense that, as the complexity of a problem increases, the possibility of analysing it in precise terms diminishes. Thus 'fuzzy thinking' may not be deplorable, after all, if it makes possible the solution of problems which are much too complex for precise analysis." (Lotfi A Zadeh, "Fuzzy languages and their relation to human intelligence", 1972)

"As the complexity of a system increases, our ability to make precise and yet significant statements about its behavior diminishes until a threshold is reached beyond which precision and significance (or relevance) become almost mutually exclusive characteristics." (Lotfi A Zadeh, 1973)

"The closer one looks at a real-world problem, the fuzzier becomes its solution." (Lotfi A Zadeh, 1973)

"[Fuzzy logic is] a logic whose distinguishing features are (1) fuzzy truth-values expressed in linguistic terms, e. g., true, very true, more or less true, or somewhat true, false, nor very true and not very false, etc.; (2) imprecise truth tables; and (3) rules of inference whose validity is relative to a context rather than exact." (Lotfi A Zadeh, "Fuzzy logic and approximate reasoning", 1975)

"[...] much of the information on which human decisions are based is possibilistic rather than probabilistic in nature, and the intrinsic fuzziness of natural languages - which is a logical consequence of the necessity to express information in a summarized form - is, in the main, possibilistic in origin." (Lotfi A Zadeh, "Fuzzy Sets as the Basis for a Theory of Possibility", Fuzzy Sets and Systems, 1978) 

"Fuzziness, then, is a concomitant of complexity. This implies that as the complexity of a task, or of a system for performing that task, exceeds a certain threshold, the system must necessarily become fuzzy in nature. Thus, with the rapid increase in the complexity of the information processing tasks which the computers are called upon to perform, we are reaching a point where computers will have to be designed for processing of information in fuzzy form. In fact, it is the capability to manipulate fuzzy concepts that distinguishes human intelligence from the machine intelligence of current generation computers. Without such capability we cannot build machines that can summarize written text, translate well from one natural language to another, or perform many other tasks that humans can do with ease because of their ability to manipulate fuzzy concepts." (Lotfi A Zadeh, "The Birth and Evolution of Fuzzy Logic", 1989)

"In essence, a basic assumption in classical mathematics is that a concept must admit of precise definition which partitions the class of all objects into two classes: (i) those objects which are instances of the concept; and (ii) those which are not, with no borderline cases allowed. For example, a function is either continuous or discontinuous; it cannot be continuous to a degree. Similarly, a matrix is either symmetric or not symmetric; it cannot be somewhat symmetric or more or asymmetric or symmetric to a degree." (Lotfi A Zadeh, "The Birth and Evolution of Fuzzy Logic", 1989)

"It is important to observe that there is an intimate connection between fuzziness and complexity. Thus, a basic characteristic of the human brain, a characteristic shared in varying degrees with all information processing systems, is its limited capacity to handle classes of high cardinality, that is, classes having a large number of members. Consequently, when we are presented with a class of very high cardinality, we tend to group its elements together into subclasses in such a way as to reduce the complexity of the information processing task involved. When a point is reached where the cardinality of the class of subclasses exceeds the information handling capacity of the human brain, the boundaries of the subclasses are forced to become imprecise and fuzziness becomes a manifestation of this imprecision." (Lotfi A Zadeh, "The Birth and Evolution of Fuzzy Logic", 1989)

"As systems became more varied and more complex, we find that no single methodology suffices to deal with them. This is particularly true of what may be called information intelligent systems - systems which form the core of modern technology. To conceive, design, analyze and use such systems we frequently have to employ the totality of tools that are available. Among such tools are the techniques centered on fuzzy logic, neurocomputing, evolutionary computing, probabilistic computing and related methodologies. It is this conclusion that formed the genesis of the concept of soft computing." (Lotfi A Zadeh, "The Birth and Evolution of Fuzzy Logic: A personal perspective", 1999)

"[...] fuzzy logic [FL] has many distinct facets - facets which overlap and have unsharp boundaries. Among these facets there are four that stand out in importance. They are (i) the logical facet; (ii) the set-theoretic facet: (iii) the relational facet, and (iv) the epistemic facet. […] The logical facet of FL, FL/L, is a logical system or, more accurately, a collection of logical systems which includes as a special case both two-valued and multiple-valued systems. […] The set-theoretic facet of FL, FL/S, is concerned with classes or sets whose boundaries are not sharply defined. […] The relational facet of FL, FL/R, is concerned in the main with representation and manipulation of imprecisely defined functions and relations. […] The epistemic facet of FL, FL/E, is linked to its logical facet and is centered on applications of FL to knowledge representation, information systems, fuzzy databases and the theories of possibility imprecise probabilities." (Lotfi A Zadeh, "The Birth and Evolution of Fuzzy Logic: A personal perspective", 1999)

"In science, it is a long-standing tradition to deal with perceptions by converting them into measurements. But what is becoming increasingly evident is that, to a much greater extent than is generally recognized, conversion of perceptions into measurements is infeasible, unrealistic or counter-productive. With the vast computational power at our command, what is becoming feasible is a counter-traditional move from measurements to perceptions. […] To be able to compute with perceptions it is necessary to have a means of representing their meaning in a way that lends itself to computation." (Lotfi A Zadeh, "The Birth and Evolution of Fuzzy Logic: A personal perspective", 1999)

"A concept which has a position of centrality in fuzzy logic is that of a fuzzy set. Informally, a fuzzy set is a class with a fuzzy boundary, implying a gradual transition from membership to nonmembership. A fuzzy set is precisiated through graduation, that is, through association with a scale of grades of membership. Thus, membership in a fuzzy set is a matter of degree. Importantly, in fuzzy logic everything is or is allowed to be graduated, that is, be a matter of degree. Furthermore, in fuzzy logic everything is or is allowed to be granulated, with a granule being a clump of attribute-values drawn together by indistinguishability, equivalence, similarity, proximity or functionality. Graduation and granulation form the core of fuzzy logic. Graduated granulation is the basis for the concept of a linguistic variable – a variable whose values are words rather than numbers. The concept of a linguistic variable is employed in almost all applications of fuzzy logic." (Lofti A Zadeh, "Fuzzy Logic", 2009) 

"In essence, logic is concerned with formalization of reasoning. Correspondently, fuzzy logic is concerned with formalization of fuzzy reasoning, with the understanding that precise reasoning is a special case of fuzzy reasoning." (Lofti A Zadeh, "Fuzzy Logic", 2009

"Science deals not with reality but with models of reality. In large measure, scientific progress is driven by a quest for better models of reality. In the real world, imprecision, uncertainty and complexity have a pervasive presence. In this setting, construction of better models of reality requires a better understanding of how to deal effectively with imprecision, uncertainty and complexity. To a significant degree, development of fuzzy logic has been, and continues to be, motivated by this need." (Lofti A Zadeh, "Fuzzy Logic", 2009) 

"As complexity rises, precise statements lose meaning and meaningful statements lose precision." (Lotfi A Zadeh) 

16 February 2020

From Parts to Wholes (1850-1899)

"The world of ideas which it [mathematics] discloses or illuminates, the contemplation of divine beauty and order which it induces, the harmonious connection of its parts, the infinite hierarchy and absolute evidence of the truths with which mathematical science is concerned, these, and such like, are the surest groimds of its title of human regard, and would remain unimpaired were the plan of the universe unrolled like a map at our feet, and the mind of man qualified to take in the whole scheme of creation at a glance.” (James J Sylvester, "A Plea for the Mathematician", Nature 1, 1870)

"Nature creates unity even in the parts of a whole." (Eugène Delacroix, 1857)

"Analysis and synthesis, though commonly treated as two different methods, are, if properly understood, only the two necessary parts of the same method. Each is the relative and correlative of the other. Analysis, without a subsequent synthesis, is incomplete; it is a mean cut of from its end. Synthesis, without a previous analysis, is baseless; for synthesis receives from analysis the elements which it recomposes." (Sir William Hamilton, "Lectures on Metaphysics and Logic: 6th Lecture on Metaphysics", 1858)

"[…] the besetting danger is not so much of embracing falsehood for truth, as of mistaking a part of the truth for the whole." (John S Mill, "Dissertations and Discussions: Political, Philosophical, and Historical”, 1859)

"We have repeatedly observed that while any whole is evolving, there is always going on an evolution of the parts into which it divides itself; but we have not observed that this equally holds of the totality of things, which is made up of parts within parts from the greatest down to the smallest." (Herbert Spencer, "First Principles", 1862)

"The adaptation observed in men, animals and plants [...] one part of this adaptation is explained from a thought-process in the interior of these bodies [...] another part, however, the adaptation of the organism, by a thought-process in a greater whole." (Bernhard Riemann, Gesammelte Mathematische Werke, 1876)

"All things, man included, are parts of one great whole." (Richard M Bucke, "Man's Moral Nature", 1879)

"The old and oft-repeated proposition ‘Totum est majus sua parte’ [the whole is larger than the part] may be applied without proof only in the case of entities that are based upon whole and part; then and only then is it an undeniable consequence of the concepts ‘totum’ and ‘pars’. Unfortunately, however, this ‘axiom’ is used innumerably often without any basis and in neglect of the necessary distinction between ‘reality’ and ‘quantity’, on the one hand, and ‘nnumbe’ and ‘set’, on the other, precisely in the sense in which it is generally false." (Georg Cantor, "Über unendliche, lineare Punktmannigfaltigkeiten", Mathematische Annalen 20, 1882)

"The part always has a tendency to reunite with its whole in order to escape from its imperfection." (Leonardo Da Vinci, "The Notebooks of Leonardo da Vinci", 1888)

From Parts to Wholes (1920-1929)

"True artistic experience is never passive, for the spectator is obliged to participate, as it were, in the continuous or discontinuous variations of proportions, positions, lines and planes. Moreover, he must see clearly how this play of repeated or non-repeated changes may give rise to a new harmony of relations which will constitute the unity of the work. Every part becomes organized into a whole with the other parts. All the parts contribute to the unity of the composition, none of them assuming a dominant place in the whole." (Theo van Doesburg, 'Grundbegriffe der neuen Gestaltenden Kunst', 1921-23)

"It has long seemed obvious - and is, in fact, the characteristic tone of European science - that 'science' means breaking up complexes into their component elements. Isolate the elements, discover their laws, then reassemble them, and the problem is solved. All wholes are reduced to pieces and piecewise relations between pieces. The fundamental 'formula' of Gestalt theory might be expressed in this way. There are wholes, the behaviour of which is not determined by that of their individual elements, but where the part-processes are themselves determined by the intrinsic nature of the whole. It is the hope of Gestalt theory to determine the nature of such wholes." (Max Wertheimer, "Gestalt Theory," 1924)

"It seems clear that [set theory] violates against the essence of the continuum, which, by its very nature, cannot at all be battered into a single set of elements. Not the relationship of an element to a set, but of a part to a whole ought to be taken as a basis for the analysis of a continuum." (Hermann Weyl, "Riemanns geometrische Ideen, ihre Auswirkungen und ihre Verknüpfung mit der Gruppentheorie", 1925)

"In all the previous cases of wholes, we have nowhere been able to argue from the parts of the whole. Compared to its parts, the whole constituted by them is something quite different, something creatively new, as we have seen. Creative evolution synthesises from the parts a new entity not only different from them, but quite transcending them. That is the essence of a whole. It is always transcendent to its parts, and its character cannot be inferred from the characters of its parts." (Jan Smuts, "Holism and Evolution", 1926)

"(Holism is) the tendency in nature to form wholes that are greater than the sum of the parts through creative evolution [...]" (Jan Smuts, "Holism and Evolution", 1926)

"The characteristic of the organism is first that it is more than the sum of its parts and second that the single processes are ordered for the maintenance of the whole." (Ludwig von Bertalanffy, 1928)

What in the whole denotes a causal equilibrium process, appears for the part as a teleological event." (Ludwig von Bertalanffy, 1929)

30 May 2019

The Infinite and Its Difficulties II

“The existence of an actual infinite multitude is impossible. For any set of things one considers must be a specific set. And sets of things are specified by the number of things in them. Now no number is infinite, for number results from counting through a set of units. So no set of things can actually be inherently unlimited, nor can it happen to be unlimited.” (Thomas Aquinas, “Summa theologia”, 13th century) 

"[Paradoxes of the infinite arise] only when we attempt, with our finite minds, to discuss the infinite, assigning to it those properties which we give to the finite and limited; but this […] is wrong, for we cannot speak of infinite quantities as being the one greater or less than or equal to another.” (Galileo Galilei, "Two New Sciences", 1638)

“Infinities and indivisibles transcend our finite understanding, the former on account of their magnitude, the latter because of their smallness; Imagine what they are when combined. In spite of this men cannot refrain from discussing them.” (Galileo Galilei, "Two New Sciences", 1638)

“Whatever we imagine is finite. Therefore, there is no idea or conception of anything we call finite. No man can have in his mind an image of infinite magnitude; nor conceive infinite swiftness, infinite time, or infinite force, or inmate power.” (Thomas Hobbes, "Of Man", 1658)

“Man is equally incapable of seeing the nothingness from which he emerges and the infinity in which he is engulfed.” (Blaise Pascal, "Pensées", 1670)

“Often I have considered the fact that most of the difficulties which block the progress of students trying to learn analysis stem from this: that although they understand little of ordinary algebra, still they attempt this more subtle art. From this it follows not only that they remain on the fringes, but in addition they entertain strange ideas about the concept of the infinite, which they must try to use." (Leonhard Euler, "Introduction to Analysis of the Infinite", 1748)

 “A great deal of misunderstanding is avoided if it be remembered that the terms infinity, infinite, zero, infinitesimal must be interpreted in connexion with their context, and admit a variety of meanings according to the way in which they are defined.” (George B Mathews, “Theory of Numbers”, 1892)

“Like children who are not permitted to do certain things, we are not permitted by nature to think in terms of infinity.” (Robert Tuttle Morris, “Microbes and Men”, 1916)

 "The infinite in mathematics is always unruly unless it is properly treated."  (Edward Kasner & James Newman, “Mathematics and the Imagination”, 1940)

“I am incapable of conceiving infinity, and yet I do not accept finity.” (Simone de Beauvoir, “La Vieillesse”, 1970)

29 August 2017

Defining the Infinite

“There is no smallest among the small and no largest among the large;
But always something still smaller and something still larger.” (Anaxagoras)


“A quantity is infinite if it is such that we can always take a part outside what has been already taken.” (Aristotle, Physics)

“For generally the infinite has this mode of existence: one thing is always being taken after another, and each thing that is taken is always finite […].” (Aristotle, Physics)

“What is that thing which does not give itself and which if it were to give itself would not exist? It is the infinite!” (Leonardo da Vinci)

“When we say anything is infinite, we signify only that we are not able to conceive the ends and bounds of the thing named.” (Thomas Hobbes)

“We call infinite that thing whose limits we have not perceived, and so by that word we do not signify what we understand about a thing, but rather what we do not understand.” (René Descartes)

“I protest against the use of infinite magnitude as something completed, which in mathematics is never permissible. Infinity is merely a facon de parler [manner of speaking], the real meaning being a limit which certain ratios approach indefinitely near, while others are permitted to increase without restriction.” (Carl F Gauss, 1831)

“An infinite set is one that can be put into a one-to-one correspondence with a proper subset of itself.” (Georg Cantor)

“The Infinite is often confounded with the Indefinite, but the two conceptions are diametrically opposed. Instead of being a quantity with unassigned yet assignable limits, the Infinite is not a quantity at all, since it neither admits of augmentation nor diminution, having no assignable limits; it is the operation of continuously withdrawing any limits that may have been assigned: the endless addition of new quantities to the old: the flux of continuity. The Infinite is no more a quantity than Zero is a quantity. If Zero is the sign of a vanished quantity, the Infinite is a sign of that continuity of Existence which has been ideally divided into discrete parts in the affixing of limits.” (George H Lewes, “Problems of Life and Mind”, Vol. 2, 1875)

“A collection of terms is infinite when it contains as parts other collections which have just as many terms in it as it has. If you can take away some of the terms of a collection, without diminishing the number of terms, then there is an infinite number of terms in the collection.” (Bertrand Russell. International Monthly, Vol. 4, 1901)
Related Posts Plugin for WordPress, Blogger...

On Leonhard Euler

"I have been able to solve a few problems of mathematical physics on which the greatest mathematicians since Euler have struggled in va...