Showing posts with label fuzzy logic. Show all posts
Showing posts with label fuzzy logic. Show all posts

02 September 2023

Bart Kosko - Collected Quotes

"A bell curve shows the 'spread' or variance in our knowledge or certainty. The wider the bell the less we know. An infinitely wide bell is a flat line. Then we know nothing. The value of the quantity, position, or speed could lie anywhere on the axis. An infinitely narrow bell is a spike that is infinitely tall. Then we have complete knowledge of the value of the quantity. The uncertainty principle says that as one bell curve gets wider the other gets thinner. As one curve peaks the other spreads. So if the position bell curve becomes a spike and we have total knowledge of position, then the speed bell curve goes flat and we have total uncertainty (infinite variance) of speed." (Bart Kosko, "Fuzzy Thinking: The new science of fuzzy logic", 1993)

"A fuzzy cognitive map or FCM draws a causal picture. It ties facts and things and processes to values and policies and objectives. And it lets you predict how complex events interact and play out. [...] Neural nets give a shortcut to tuning an FCM. The trick is to let the fuzzy causal edges change as if they were synapses in a neural net. They cannot change with the same math laws because FCM edges stand for causal effect not signal flow. We bombard the FCM nodes with real data. The data state which nodes are on or off and to which degree at each moment in time. Then the edges grow among the nodes."  (Bart Kosko, "Fuzzy Thinking: The new science of fuzzy logic", 1993)

"A neural net acts like the eyes and ears of an adaptive fuzzy system, a fuzzy system whose rules change with experience. The neural net senses fuzzy patterns in the data and learns to associate the patterns. The associations are rules: If fuzzy set A, then fuzzy set B." (Bart Kosko, "Fuzzy Thinking: The new science of fuzzy logic", 1993)

"Bivalence trades accuracy for simplicity. Binary outcomes of yes and no, white and black, true and false simplify math and computer processing. You can work with strings of 0s and 1s more easily than you can work with fractions. But bivalence requires some force fitting and rounding off [...] Bivalence holds at cube corners. Multivalence holds everywhere else." (Bart Kosko, "Fuzzy Thinking: The new science of fuzzy logic", 1993)

"Descriptions split into two groups, the logical and the factual, or the mathematical and the scientific, or the coherent and the correspondent. The split depends on accuracy. Logical statements are completely accurate or completely inaccurate. They alone are all or none. Factual statements are partially accurate or partially inaccurate." (Bart Kosko, "Fuzzy Thinking: The new science of fuzzy logic", 1993)

"Fuzziness has a formal name in science: multivalence. The opposite of fuzziness is bivalence or two-valuedness, two ways to answer each question, true or false, 1 or 0. Fuzziness means multivalence. It means three or more options, perhaps an infinite spectrum of options, instead of just two extremes. It means analog instead of binary, infinite shades of gray between black and white." (Bart Kosko, "Fuzzy Thinking: The new science of fuzzy logic", 1993)

"Fuzzy entropy measures the fuzziness of a fuzzy set. It answers the question 'How fuzzy is a fuzzy set?' And it is a matter of degree. Some fuzzy sets are fuzzier than others. Entropy means the uncertainty or disorder in a system. A set describes a system or collection of things. When the set is fuzzy, when elements belong to it to some degree, the set is uncertain or vague to some degree. Fuzzy entropy measures this degree. And it is simple enough that you can see it in a picture of a cube." (Bart Kosko, "Fuzzy Thinking: The new science of fuzzy logic", 1993)

"[...] fuzzy things resemble fuzzy nonthings. A resembles not-A. Fuzzy things have vague boundaries with their opposites, with nonthings. The more a thing resembles its opposite, the fuzzier it is. In the fuzziest case the thing equals its opposite: the glass of water half empty and half full [...]" (Bart Kosko, "Fuzzy Thinking: The new science of fuzzy logic", 1993)

"I called this the mismatch problem: The world is gray but science is black and white. We talk in zeroes and ones but the truth lies in between. Fuzzy world, nonfuzzy description. The statements of formal logic and computer programming are all true or all false, 1 or 0. But statements about the world differ." (Bart Kosko, "Fuzzy Thinking: The new science of fuzzy logic", 1993)

"Laws of science are not laws at all. They are not laws in the sense of logical laws like two plus two equals four. Logic does not legislate them. Laws of science state tendencies we have recently observed in our corner of the universe. The best you can say about them is so far, so good. In the next instant every 'law' of science may change. Their truth is a matter of degree and is always up for grabs." (Bart Kosko, "Fuzzy Thinking: The new science of fuzzy logic", 1993)

"Math is a formal system. We can manipulate math symbols and not understand what they mean. We can just apply the syntax rules as a computer does when it adds up numbers or proves a theorem. The computer shows the truth of the theorem but does not 'understand' its 'meaning'." (Bart Kosko, "Fuzzy Thinking: The new science of fuzzy logic", 1993)

"Science undercuts ethics because we have made science the measure of all things. Truth means truth of science. Truth means logical truth or factual truth. Truth means math proof or data test. The truth can be a matter of degree. But that does not help ethics." (Bart Kosko, "Fuzzy Thinking: The new science of fuzzy logic", 1993)

"Scientific claims or statements are inexact and provisional. They depend on dozens of simplifying assumptions and on a particular choice of words and symbols and on 'all other things being equal'." (Bart Kosko, "Fuzzy Thinking: The new science of fuzzy logic", 1993)

"Scientists try to make things simple. That is in good part why we are stuck with bivalence. Scientists' first instinct is to fit a linear model to a nonlinear world. This creates another mismatch problem, the math modeler's dilemma: linear math, nonlinear world." (Bart Kosko, "Fuzzy Thinking: The new science of fuzzy logic", 1993)

"Somewhere in the process wishful thinking seems to take over. Scientists start to believe they do math when they do science. This holds to greatest degree in an advanced science like physics or at the theoretical frontier of any science where the claims come as math claims. The first victim is truth. What was inaccurate or fuzzy truth all along gets bumped up a letter grade to the all-or-none status of binary logic. Most scientists draw the line at giving up the tentative status of science. They will concede that it can all go otherwise in the next experiment. But most have crossed the bivalent line by this point and believe that in the next experiment a statement or hypothesis or theory may jump from TRUE to FALSE, from 1 to 0." (Bart Kosko, "Fuzzy Thinking: The new science of fuzzy logic", 1993)

"The binary logic of modern computers often falls short when describing the vagueness of the real world. Fuzzy logic offers more graceful alternatives." (Bart Kosko & Satoru Isaka, "Fuzzy Logic,” Scientific American Vol. 269, 1993)

"We can put black-and-white labels on these things. But labels will pass from accurate to inaccurate as the things change. Language ties a string between a word and the thing it stands for. When the thing changes to a nonthing, the string stretches or breaks or tangles with other strings." (Bart Kosko, "Fuzzy Thinking: The new science of fuzzy logic", 1993)

"A bit involves both probability and an experiment that decides a binary or yes-no question. Consider flipping a coin. One bit of in-formation is what we learn from the flip of a fair coin. With an unfair or biased coin the odds are other than even because either heads or tails is more likely to appear after the flip. We learn less from flipping the biased coin because there is less surprise in the outcome on average. Shannon's bit-based concept of entropy is just the average information of the experiment. What we gain in information from the coin flip we lose in uncertainty or entropy." (Bart Kosko, "Noise", 2006)

"A signal has a finite-length frequency spectrum only if it lasts infinitely long in time. So a finite spectrum implies infinite time and vice versa. The reverse also holds in the ideal world of mathematics: A signal is finite in time only if it has a frequency spectrum that is infinite in extent." (Bart Kosko, "Noise", 2006)

"Adaptive systems learn by enlightened trial and error. The system can take a long time to learn well just as it can take a human a long time to learn to properly swing a golf club even with the help of the best golf instructor. But this iterative learning can also produce solutions that we could not find or at least could not find easily by pure mathematical analysis."  (Bart Kosko, "Noise", 2006)

"Any technical discussion of noise begins with white noise because white noise is pure or ideal noise. White noise serves as the gold standard of noise. Scientists and engineers have explored hundreds of other noise types but most of these deviate from white noise in some specific way. White noise is noisy because it has a wide and flat band of frequencies if one looks at its spectrum. This reflects the common working definition of noise as a so-called wideband signal. Good signals or wanted signals concentrate their energy on a comparatively narrow band of the frequency spectrum. Hence good signals tend to be so-called narrowband signals at least relative to the wide band of white noise. White noise is so noisy because its spectrum is as wide as possible - it runs the whole infinite length of the frequency spectrum itself. So pure or ideal white noise exists only as a mathematical abstraction. It cannot exist physically because it would require infinite energy." (Bart Kosko, "Noise", 2006)

"Bell curves don't differ that much in their bells. They differ in their tails. The tails describe how frequently rare events occur. They describe whether rare events really are so rare. This leads to the saying that the devil is in the tails." (Bart Kosko, "Noise", 2006)

"Chaos can leave statistical footprints that look like noise. This can arise from simple systems that are deterministic and not random. [...] The surprising mathematical fact is that most systems are chaotic. Change the starting value ever so slightly and soon the system wanders off on a new chaotic path no matter how close the starting point of the new path was to the starting point of the old path. Mathematicians call this sensitivity to initial conditions but many scientists just call it the butterfly effect. And what holds in math seems to hold in the real world - more and more systems appear to be chaotic." (Bart Kosko, "Noise", 2006)

"'Chaos' refers to systems that are very sensitive to small changes in their inputs. A minuscule change in a chaotic communication system can flip a 0 to a 1 or vice versa. This is the so-called butterfly effect: Small changes in the input of a chaotic system can produce large changes in the output. Suppose a butterfly flaps its wings in a slightly different way. can change its flight path. The change in flight path can in time change how a swarm of butterflies migrates." (Bart Kosko, "Noise", 2006)

"I wage war on noise every day as part of my work as a scientist and engineer. We try to maximize signal-to-noise ratios. We try to filter noise out of measurements of sounds or images or anything else that conveys information from the world around us. We code the transmission of digital messages with extra 0s and 1s to defeat line noise and burst noise and any other form of interference. Wc design sophisticated algorithms to track noise and then cancel it in headphones or in a sonogram. Some of us even teach classes on how to defeat this nemesis of the digital age. Such action further conditions our anti-noise reflexes." (Bart Kosko, "Noise", 2006)

"Is the universe noise? That question is not as strange as it sounds. Noise is an unwanted signal. A signal is anything that conveys information or ultimately anything that has energy. The universe consists of a great deal of energy. Indeed a working definition of the universe is all energy anywhere ever. So the answer turns on how one defines what it means to be wanted and by whom." (Bart Kosko, "Noise", 2006)

"Linear systems do not benefit from noise because the output of a linear system is just a simple scaled version of the input [...] Put noise in a linear system and you get out noise. Sometimes you get out a lot more noise than you put in. This can produce explosive effects in feedback systems that take their own outputs as inputs." (Bart Kosko, "Noise", 2006)

"Many scientists who work not just with noise but with probability make a common mistake: They assume that a bell curve is automatically Gauss's bell curve. Empirical tests with real data can often show that such an assumption is false. The result can be a noise model that grossly misrepresents the real noise pattern. It also favors a limited view of what counts as normal versus non-normal or abnormal behavior. This assumption is especially troubling when applied to human behavior. It can also lead one to dismiss extreme data as error when in fact the data is part of a pattern." (Bart Kosko, "Noise", 2006)

"Mutual information is the receiver's entropy minus the conditional entropy of what the receiver receives - given what message the sender sends through the noisy channel. Conditioning or getting data can only reduce uncertainty and so this gap is always positive or zero. It can never be negative. You can only learn from further experience. Information theorists capture this theorem in a slogan: Conditioning reduces entropy. The channel capacity itself is the largest gap given all possible probability descriptions of what [the sender] sent. It is the most information that on average you could ever get out of the noisy channel." (Bart Kosko, "Noise", 2006)

"Noise is a signal we don't like. Noise has two parts. The first has to do with the head and the second with the heart. The first part is the scientific or objective part: Noise is a signal. [...] The second part of noise is the subjective part: It deals with values. It deals with how we draw the fuzzy line between good signals and bad signals. Noise signals are the bad signals. They are the unwanted signals that mask or corrupt our preferred signals. They not only interfere but they tend to interfere at random." (Bart Kosko, "Noise", 2006)

"Noise is an unwanted signal. A signal is anything that conveys information or ultimately anything that has energy. The universe consists of a great deal of energy. Indeed a working definition of the universe is all energy anywhere ever. So the answer turns on how one defines what it means to be wanted and by whom." (Bart Kosko, "Noise", 2006)

"One person’s signal is another person’s noise and vice versa. We call this relative role reversal the noise-signal duality." (Bart Kosko, "Noise", 2006)

"One of the ironies of mathematics is that the ratio of two Gaussian quantities gives a Cauchy quantity. So you get Cauchy noise if you divide one Gaussian white noise process by another. [...] There is a still deeper relationship between the Cauchy and Gaussian bell curves. Both belong to a special family of probability curves called stable distributions [...] Gaussian quantities [...] are closed under addition. If you add two Gaussian noises then the result is still a Gaussian noise. This 'stable' property is not true for most noise or probability types. It is true for Cauchy processes." (Bart Kosko, "Noise", 2006)

"The central limit theorem differs from laws of large numbers because random variables vary and so they differ from constants such as population means. The central limit theorem says that certain independent random effects converge not to a constant population value such as the mean rate of unemployment but rather they converge to a random variable that has its own Gaussian bell-curve description." (Bart Kosko, "Noise", 2006)

"The flaw in the classical thinking is the assumption that variance equals dispersion. Variance tends to exaggerate outlying data because it squares the distance between the data and their mean. This mathematical artifact gives too much weight to rotten apples. It can also result in an infinite value in the face of impulsive data or noise. [...] Yet dispersion remains an elusive concept. It refers to the width of a probability bell curve in the special but important case of a bell curve. But most probability curves don't have a bell shape. And its relation to a bell curve's width is not exact in general. We know in general only that the dispersion increases as the bell gets wider. A single number controls the dispersion for stable bell curves and indeed for all stable probability curves - but not all bell curves are stable curves." (Bart Kosko, "Noise", 2006)

"The noise takes its toll on the message as it randomly turns some of the 1 bits into 0 bits and randomly turns some of the 0 bits into 1 bits: Noise randomly flips bits. [...] But noise can be subtler in a digital system. Noise can disturb the timing of when a bit value arrives at a receiver as well as randomly flipping that bit value." (Bart Kosko, "Noise", 2006)

"The universe is noisy on all scales even if the universe itself is not noise. The fading noise of the ancient big bang explosion fills the cosmos. It still gently hisses and crackles all around us in the form of junk microwave radiation." (Bart Kosko, "Noise", 2006)

08 June 2021

On Patterns (1960-1969)

"Any pattern of activity in a network, regarded as consistent by some observer, is a system, Certain groups of observers, who share a common body of knowledge, and subscribe to a particular discipline, like 'physics' or 'biology' (in terms of which they pose hypotheses about the network), will pick out substantially the same systems. On the other hand, observers belonging to different groups will not agree about the activity which is a system." (Gordon Pask, The Natural History of Networks, 1960)

"It is of our very nature to see the universe as a place that we can talk about. In particular, you will remember, the brain tends to compute by organizing all of its input into certain general patterns. It is natural for us, therefore, to try to make these grand abstractions, to seek for one formula, one model, one God, around which we can organize all our communication and the whole business of living." (John Z Young, "Doubt and Certainty in Science: A Biologist’s Reflections on the Brain", 1960)

"How can a modern anthropologist embark upon a generalization with any hope of arriving at a satisfactory conclusion? By thinking of the organizational ideas that are present in any society as a mathematical pattern." (Edmund R Leach, "Rethinking Anthropology", 1961)

"Mathematics is a creation of the mind. To begin with, there is a collection of things, which exist only in the mind, assumed to be distinguishable from one another; and there is a collection of statements about these things, which are taken for granted. Starting with the assumed statements concerning these invented or imagined things, the mathematician discovers other statements, called theorems, and proves them as necessary consequences. This, in brief, is the pattern of mathematics. The mathematician is an artist whose medium is the mind and whose creations are ideas." (Hubert S Wall, "Creative Mathematics", 1963)

"The mark of our time is its revulsion against imposed patterns." (Marshall McLuhan, "Understanding Media", 1964)

"The 'message' of any medium or technology is the change of scale or pace or pattern that it introduces into human affairs." (Marshall McLuhan, "Understanding Media", 1964)

"Without the hard little bits of marble which are called 'facts' or 'data' one cannot compose a mosaic; what matters, however, are not so much the individual bits, but the successive patterns into which you arrange them, then break them up and rearrange them." (Arthur Koestler, "The Act of Creation", 1964)

"The notion of a fuzzy set provides a convenient point of departure for the construction of a conceptual framework which parallels in many respects the framework used in the case of ordinary sets, but is more general than the latter and, potentially, may prove to have a much wider scope of applicability, particularly in the fields of pattern classification and information processing. Essentially, such a framework provides a natural way of dealing with problems in which the source of imprecision is the absence of sharply denned criteria of class membership rather than the presence of random variables." (Lotfi A Zadeh, "Fuzzy Sets", 1965)

"As perceivers we select from all the stimuli falling on our senses only those which interest us, and our interests are governed by a pattern-making tendency, sometimes called a schema. In a chaos of shifting impressions each of us constructs a stable world in which objects have recognisable shapes, are located in depth and have permanence." (Mary Douglas, "Purity and Danger", 1966)

"System theory is basically concerned with problems of relationships, of structure, and of interdependence rather than with the constant attributes of objects. In general approach it resembles field theory except that its dynamics deal with temporal as well as spatial patterns. Older formulations of system constructs dealt with the closed systems of the physical sciences, in which relatively self-contained structures could be treated successfully as if they were independent of external forces. But living systems, whether biological organisms or social organizations, are acutely dependent on their external environment and so must be conceived of as open systems." (Daniel Katz, "The Social Psychology of Organizations", 1966)

"[…] there is perhaps a difference between the ideas which are associated in the sense of their patterns being tired to the original one and available in connexion with it, and being actually associated or aroused. Our mental modelling of the outer world may imitate it and its sequences from moment to moment, but only that which is fairly frequent, or fits into other patterns, will remain for long, and of that only a portion will arise in response to other ideas. " (Kenneth J W Craik, "The Nature of Psychology", 1966)

"It [knowledge] is clearly related to information, which we can now measure; and an economist especially is tempted to regard knowledge as a kind of capital structure, corresponding to information as an income flow. Knowledge, that is to say, is some kind of improbable structure or stock made up essentially of patterns - that is, improbable arrangements, and the more improbable the arrangements, we might suppose, the more knowledge there is." (Kenneth Boulding, "Beyond Economics: Essays on Society", 1968)

"The central task of a natural science is to make the wonderful commonplace: to show that complexity, correctly viewed, is only a mask for simplicity; to find pattern hidden in apparent chaos. […] This is the task of natural science: to show that the wonderful is not incomprehensible, to show how it can be comprehended - but not to destroy wonder. For when we have explained the wonderful, unmasked the hidden pattern, a new wonder arises at how complexity was woven out of simplicity. The aesthetics of natural science and mathematics is at one with the aesthetics of music and painting - both inhere in the discovery of a partially concealed pattern." (Herbert A Simon, "The Sciences of the Artificial", 1968)

"Faced with information overload, we have no alternative but pattern-recognition."(Marshall McLuhan, "Counterblast", 1969) 

"The central task of a natural science is to make the wonderful commonplace: to show that complexity, correctly viewed, is only a mask for simplicity; to find pattern hidden in apparent chaos." (Herbert A Simon, "The Sciences of the Artificial", 1969)

"Visual thinking calls, more broadly, for the ability to see visual shapes as images of the patterns of forces that underlie our existence - the functioning of minds, of bodies or machines, the structure of societies or ideas." (Rudolf Arnheim, "Visual Thinking", 1969)

24 May 2021

On Fuzzy Logic IV

"Fuzzy systems are excellent tools for representing heuristic, commonsense rules. Fuzzy inference methods apply these rules to data and infer a solution. Neural networks are very efficient at learning heuristics from data. They are 'good problem solvers' when past data are available. Both fuzzy systems and neural networks are universal approximators in a sense, that is, for a given continuous objective function there will be a fuzzy system and a neural network which approximate it to any degree of accuracy." (Nikola K Kasabov, "Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering", 1996)

"Fuzzy set theory [...] is primarily concerned with quantifying and reasoning using natural language in which words can have ambiguous meanings. It is widely used in a variety of fields because of its simplicity and similarity to human reasoning." (Tzung-Pei Hong et al, "Genetic-Fuzzy Data Mining Techniques", 2009)

"Fuzzy systems are rule-based expert systems based on fuzzy rules and fuzzy inference. Fuzzy rules represent in a straightforward way 'commonsense' knowledge and skills, or knowledge that is subjective, ambiguous, vague, or contradictory." (Nikola K Kasabov, "Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering", 1996)

"A concept which has a position of centrality in fuzzy logic is that of a fuzzy set. Informally, a fuzzy set is a class with a fuzzy boundary, implying a gradual transition from membership to nonmembership. A fuzzy set is precisiated through graduation, that is, through association with a scale of grades of membership. Thus, membership in a fuzzy set is a matter of degree. Importantly, in fuzzy logic everything is or is allowed to be graduated, that is, be a matter of degree. Furthermore, in fuzzy logic everything is or is allowed to be granulated, with a granule being a clump of attribute-values drawn together by indistinguishability, equivalence, similarity, proximity or functionality. Graduation and granulation form the core of fuzzy logic. Graduated granulation is the basis for the concept of a linguistic variable – a variable whose values are words rather than numbers. The concept of a linguistic variable is employed in almost all applications of fuzzy logic." (Lofti A Zadeh, "Fuzzy Logic", 2009)

"[Fuzzy logic p]rovides formal means for the representation of, and inference based on imprecisely specified premises and rules of inference; can be understood in different ways, basically as fuzzy logic in a narrow sense, being some type of multivalued logic, and fuzzy logic in a broad sense, being a way to formalize inference based on imprecisely specified premises and rules of inference. (Janusz Kacprzyk, "Foundations of Fuzzy Sets Theory", 2009)

"Granular computing is a general computation theory for using granules such as subsets, classes, objects, clusters, and elements of a universe to build an efficient computational model for complex applications with huge amounts of data, information, and knowledge. Granulation of an object a leads to a collection of granules, with a granule being a clump of points (objects) drawn together by indiscernibility, similarity, proximity, or functionality. In human reasoning and concept formulation, the granules and the values of their attributes are fuzzy rather than crisp. In this perspective, fuzzy information granulation may be viewed as a mode of generalization, which can be applied to any concept, method, or theory." (Salvatore Greco et al, "Granular Computing and Data Mining for Ordered Data: The Dominance-Based Rough Set Approach", 2009)

"In essence, logic is concerned with formalization of reasoning. Correspondently, fuzzy logic is concerned with formalization of fuzzy reasoning, with the understanding that precise reasoning is a special case of fuzzy reasoning." (Lofti A Zadeh, "Fuzzy Logic", 2009)

"Science deals not with reality but with models of reality. In large measure, scientific progress is driven by a quest for better models of reality. In the real world, imprecision, uncertainty and complexity have a pervasive presence. In this setting, construction of better models of reality requires a better understanding of how to deal effectively with imprecision, uncertainty and complexity. To a significant degree, development of fuzzy logic has been, and continues to be, motivated by this need." (Lofti A Zadeh, "Fuzzy Logic", 2009)

"Unlike a conventional set, in a fuzzy set, a fuzzy membership function is used to define the degree of an element belonging to the set. Fuzzy logic is a superset of conventional (Boolean) logic that has been extended to handle the concept of partial truth as defined by membership functions. Fuzzy logic contributes to the machinery of granular computing." (Zhengxin Chen, "Philosophical Foundation for Granular Computing", 2009)

"Unlike the classic set theory where a set is represented as an indicator function to specify if an object belongs or not to it, a fuzzy set is an extension of a classic set where a subset is represented as a membership function to characterize the degree that an object belongs to it. The indicator function of a classic set takes value of 1 or 0, whereas the membership function of a fuzzy set takes value between 1 and 0." (Jianchao Han & Nick Cerone, Principles and Perspectives of Granular Computing, 2009) 

12 May 2021

Nikola K Kasabov - Collected Quotes

"A strategy is usually expressed by a set of heuristic rules. The heuristic rules ease the process of searching for an optimal solution. The process is usually iterative and at one step either the global optimum for the whole problem (state) space is found and the process stops, or a local optimum for a subspace of the state space of the problem is found and the problem continues, if it is possible to improve." (Nikola K Kasabov, "Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering", 1996)

"Adaptation is the process of changing a system during its operation in a dynamically changing environment. Learning and interaction are elements of this process. Without adaptation there is no intelligence." (Nikola K Kasabov, "Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering", 1996)

 "An artificial neural network (or simply a neural network) is a biologically inspired computational model that consists of processing elements (neurons) and connections between them, as well as of training and recall algorithms." (Nikola K Kasabov, "Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering", 1996)

"Artificial intelligence comprises methods, tools, and systems for solving problems that normally require the intelligence of humans. The term intelligence is always defined as the ability to learn effectively, to react adaptively, to make proper decisions, to communicate in language or images in a sophisticated way, and to understand." (Nikola K Kasabov, "Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering", 1996) 

"Data obtained without any external disturbance or corruption are called clean; noisy data mean that a small random ingredient is added to the clean data." (Nikola K Kasabov, "Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering", 1996)

"Fuzzy systems are excellent tools for representing heuristic, commonsense rules. Fuzzy inference methods apply these rules to data and infer a solution. Neural networks are very efficient at learning heuristics from data. They are 'good problem solvers' when past data are available. Both fuzzy systems and neural networks are universal approximators in a sense, that is, for a given continuous objective function there will be a fuzzy system and a neural network which approximate it to any degree of accuracy." (Nikola K Kasabov, "Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering", 1996)

"Fuzzy systems are rule-based expert systems based on fuzzy rules and fuzzy inference. Fuzzy rules represent in a straightforward way "commonsense" knowledge and skills, or knowledge that is subjective, ambiguous, vague, or contradictory." (Nikola K Kasabov, "Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering", 1996)

"Generalization is the process of matching new, unknown input data with the problem knowledge in order to obtain the best possible solution, or one close to it. Generalization means reacting properly to new situations, for example, recognizing new images, or classifying new objects and situations. Generalization can also be described as a transition from a particular object description to a general concept description. This is a major characteristic of all intelligent systems." (Nikola K Kasabov, "Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering", 1996) 

"Generally speaking, problem knowledge for solving a given problem may consist of heuristic rules or formulas that comprise the explicit knowledge, and past-experience data that comprise the implicit, hidden knowledge. Knowledge represents links between the domain space and the solution space, the space of the independent variables and the space of the dependent variables." (Nikola K Kasabov, "Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering", 1996)

"Heuristic (it is of Greek origin) means discovery. Heuristic methods are based on experience, rational ideas, and rules of thumb. Heuristics are based more on common sense than on mathematics. Heuristics are useful, for example, when the optimal solution needs an exhaustive search that is not realistic in terms of time. In principle, a heuristic does not guarantee the best solution, but a heuristic solution can provide a tremendous shortcut in cost and time." (Nikola K Kasabov, "Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering", 1996)

"Heuristic methods may aim at local optimization rather than at global optimization, that is, the algorithm optimizes the solution stepwise, finding the best solution at each small step of the solution process and 'hoping' that the global solution, which comprises the local ones, would be satisfactory." (Nikola K Kasabov, "Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering", 1996)

"Inference is the process of matching current facts from the domain space to the existing knowledge and inferring new facts. An inference process is a chain of matchings. The intermediate results obtained during the inference process are matched against the existing knowledge. The length of the chain is different. It depends on the knowledge base and on the inference method applied." (Nikola K Kasabov, "Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering", 1996)

"Learning is the process of obtaining new knowledge. It results in a better reaction to the same inputs at the next session of operation. It means improvement. It is a step toward adaptation. Learning is a major characteristic of intelligent systems." (Nikola K Kasabov, "Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering", 1996)

"Prediction (forecasting) is the process of generating information for the possible future development of a process from data about its past and its present development." (Nikola K Kasabov, "Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering", 1996)

"Representation is the process of transforming existing problem knowledge to some of the known knowledge-engineering schemes in order to process it by applying knowledge-engineering methods. The result of the representation process is the problem knowledge base in a computer format." (Nikola K Kasabov, "Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering", 1996)

"The most distinguishing property of fuzzy logic is that it deals with fuzzy propositions, that is, propositions which contain fuzzy variables and fuzzy values, for example, 'the temperature is high', 'the height is short'. The truth values for fuzzy propositions are not TRUE/FALSE only, as is the case in propositional boolean logic, but include all the grayness between two extreme values." (Nikola K Kasabov, "Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering", 1996)

"Validation is the process of testing how good the solutions produced by a system are. The results produced by a system are usually compared with the results obtained either by experts or by other systems. Validation is an extremely important part of the process of developing every knowledge-based system. Without comparing the results produced by the system with reality, there is little point in using it." (Nikola K Kasabov, "Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering", 1996)

17 March 2021

Mathematical Models III

"Mathematical model making is an art. If the model is too small, a great deal of analysis and numerical solution can be done, but the results, in general, can be meaningless. If the model is too large, neither analysis nor numerical solution can be carried out, the interpretation of the results is in any case very difficult, and there is great difficulty in obtaining the numerical values of the parameters needed for numerical results." (Richard E Bellman, "Eye of the Hurricane: An Autobiography", 1984)

"Symmetries abound in nature, in technology, and - especially - in the simplified mathematical models we study so assiduously. Symmetries complicate things and simplify them. They complicate them by introducing exceptional types of behavior, increasing the number of variables involved, and making vanish things that usually do not vanish. They simplify them by introducing exceptional types of behavior, increasing the number of variables involved, and making vanish things that usually do not vanish. They violate all the hypotheses of our favorite theorems, yet lead to natural generalizations of those theorems. It is now standard to study the 'generic' behavior of dynamical systems. Symmetry is not generic. The answer is to work within the world of symmetric systems and to examine a suitably restricted idea of genericity." (Ian Stewart, "Bifurcation with symmetry", 1988)

"Pedantry and sectarianism aside, the aim of theoretical physics is to construct mathematical models such as to enable us, from the use of knowledge gathered in a few observations, to predict by logical processes the outcomes in many other circumstances. Any logically sound theory satisfying this condition is a good theory, whether or not it be derived from ‘ultimate’ or ‘fundamental’ truth." (Clifford Truesdell & Walter Noll, "The Non-Linear Field Theories of Mechanics" 2nd Ed., 1992)

"[…] interval mathematics and fuzzy logic together can provide a promising alternative to mathematical modeling for many physical systems that are too vague or too complicated to be described by simple and crisp mathematical formulas or equations. When interval mathematics and fuzzy logic are employed, the interval of confidence and the fuzzy membership functions are used as approximation measures, leading to the so-called fuzzy systems modeling." (Guanrong Chen & Trung Tat Pham, "Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems", 2001)

"Modeling, in a general sense, refers to the establishment of a description of a system (a plant, a process, etc.) in mathematical terms, which characterizes the input-output behavior of the underlying system. To describe a physical system […] we have to use a mathematical formula or equation that can represent the system both qualitatively and quantitatively. Such a formulation is a mathematical representation, called a mathematical model, of the physical system." (Guanrong Chen & Trung Tat Pham, "Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems", 2001)

"An important aspect of the global theory of dynamical systems is the stability of the orbit structure as a whole. The motivation for the corresponding theory comes from applied mathematics. Mathematical models always contain simplifying assumptions. Dominant features are modeled; supposed small disturbing forces are ignored. Thus, it is natural to ask if the qualitative structure of the set of solutions - the phase portrait - of a model would remain the same if small perturbations were included in the model. The corresponding mathematical theory is called structural stability." (Carmen Chicone, "Stability Theory of Ordinary Differential Equations" [Mathematics of Complexity and Dynamical Systems, 2012])

"Models do not and need not match reality in all of its aspects and details to be adequate. A mathematical model is usually developed for a specific class of target systems, and its validity is determined relative to its intended applications. A model is considered valid within its intended domain of applicability provided that its predictions in that domain fall within an acceptable range of error, specified prior to the model’s development or identification." (Zoltan Domotor, "Mathematical Models in Philosophy of Science" [Mathematics of Complexity and Dynamical Systems, 2012])

"Simplified description of a real world system in mathematical terms, e. g., by means of differential equations or other suitable mathematical structures." (Benedetto Piccoli, Andrea Tosin, "Vehicular Traffic: A Review of Continuum Mathematical Models" [Mathematics of Complexity and Dynamical Systems, 2012])

"Stated loosely, models are simplified, idealized and approximate representations of the structure, mechanism and behavior of real-world systems. From the standpoint of set-theoretic model theory, a mathematical model of a target system is specified by a nonempty set - called the model’s domain, endowed with some operations and relations, delineated by suitable axioms and intended empirical interpretation." (Zoltan Domotor, "Mathematical Models in Philosophy of Science" [Mathematics of Complexity and Dynamical Systems, 2012])

"The standard view among most theoretical physicists, engineers and economists is that mathematical models are syntactic (linguistic) items, identified with particular systems of equations or relational statements. From this perspective, the process of solving a designated system of (algebraic, difference, differential, stochastic, etc.) equations of the target system, and interpreting the particular solutions directly in the context of predictions and explanations are primary, while the mathematical structures of associated state and orbit spaces, and quantity algebras – although conceptually important, are secondary." (Zoltan Domotor, "Mathematical Models in Philosophy of Science" [Mathematics of Complexity and Dynamical Systems, 2012])

04 December 2020

Fuzzy Logic III

"Another direction of research is fuzzy systems. This will greatly increase the use of mathematics from the inanimate to the animate. In the past, mathematics has been used for the analysis of physical systems. With fuzzy systems and computer simulation we can study many processes in the social sciences." (Richard E Bellman, "Eye of the Hurricane: An Autobiography", 1984)

"In the real world, none of these assumptions are uniformly valid. Often people want to know why mathematics and computers cannot be used to handle the meaningful problems of society, as opposed, let us say, to the moon boondoggle and high energy-high cost physics. The answer lies in the fact that we don't know how to describe the complex systems of society involving people, we don't understand cause and effect, which is to say the consequences of decisions, and we don't even know how to make our objectives reasonably precise. None of the requirements of classical science are met. Gradually, a new methodology for dealing with these 'fuzzy' problems is being developed, but the path is not easy." (Richard E Bellman, "Eye of the Hurricane: An Autobiography", 1984)

"One advantage of the use of fuzzy models is the fact that their complexity can be gradually increased as more information is gathered. This increase in complexity can be done automatically or manually by a careful commission of the new operating point." (Jairo Espinosa et al, "Fuzzy Logic, Identification and Predictive Control", 2005)

"Each fuzzy set is uniquely defined by a membership function. […] There are two approaches to determining a membership function. The first approach is to use the knowledge of human experts. Because fuzzy sets are often used to formulate human knowledge, membership functions represent a part of human knowledge. Usually, this approach can only give a rough formula of the membership function and fine-tuning is required. The second approach is to use data collected from various sensors to determine the membership function. Specifically, we first specify the structure of membership function and then fine-tune the parameters of membership function based on the data." (Huaguang Zhang & Derong Liu, "Fuzzy Modeling and Fuzzy Control", 2006)

"Logic is the study of methods and principles of reasoning, where reasoning means obtaining new propositions from existing propositions. In classical logic, propositions are required to be either true or false; that is, the truth value of a proposition is either 0 or 1. Fuzzy logic generalizes classical two-value logic by allowing the truth values of a proposition to be any numbers in [0, 1]. This generalization allows us to perform fuzzy reasoning, also called approximate reasoning; that is, deducing imprecise conclusions (fuzzy propositions) from a collection of imprecise premises (fuzzy propositions). In this section, we first introduce some basic concepts and principles in classical logic and then study their generalizations to fuzzy logic." (Huaguang Zhang & Derong Liu, "Fuzzy Modeling and Fuzzy Control", 2006)

"Fuzzy logic is an application area of fuzzy set theory dealing with uncertainty in reasoning. It utilizes concepts, principles, and methods developed within fuzzy set theory for formulating various forms of sound approximate reasoning. Fuzzy logic allows for set membership values to range (inclusively) between 0 and 1, and in its linguistic form, imprecise concepts like 'slightly', 'quite' and 'very'. Specifically, it allows partial membership in a set." (Larbi Esmahi et al,  Adaptive Neuro-Fuzzy Systems, 2009)

"Like classical logic, fuzzy logic uses formulas to formally represent statements about the world. Given an appropriate semantic structure (such as an evaluation of propositional symbols in the case of propositional logic, or a relational structure in the case of predicate logic), a truth degree of formula ϕ is denoted by ||ϕ||. It is significant that the truth degree ||ϕ|| of ϕ may in general be any element of the set of truth degrees. That is, formulas in fuzzy logic are true to degrees , not just true or false as in the case of classical logic." (Radim Belohlavek & George J Klir, "Concepts and Fuzzy Logic", 2011)

"Nevertheless, the use of fuzzy logic is supported by at least the following three arguments. First, fuzzy logic is rooted in the intuitively appealing idea that the truths of propositions used by humans are a matter of degree. An important consequence is that the basic principles and concepts of fuzzy logic are easily understood. Second, fuzzy logic has led to many successful applications, including many commercial products, in which the crucial part relies on representing and dealing with statements in natural language that involve vague terms. Third, fuzzy logic is a proper generalization of classical logic, follows an agenda similar to that of classical logic, and has already been highly developed. An important consequence is that fuzzy logic extends the rich realm of applications of classical logic to applications in which the bivalent character of classical logic is a limiting factor." (Radim Belohlavek & George J Klir, "Concepts and Fuzzy Logic", 2011)

"The principal idea employed by fuzzy logic is to allow for a partially ordered scale of truth-values, called also truth degrees, which contains the values representing false and true , but also some additional, intermediary truth degrees. That is, the set {0,1} of truth-values of classical logic, where 0 and 1 represent false and true , respectively, is replaced in fuzzy logic by a partially ordered scale of truth degrees with the smallest degree being 0 and the largest one being 1." (Radim Belohlavek & George J Klir, "Concepts and Fuzzy Logic", 2011)

"We use the term fuzzy logic to refer to all aspects of representing and manipulating knowledge that employ intermediary truth-values. This general, commonsense meaning of the term fuzzy logic encompasses, in particular, fuzzy sets, fuzzy relations, and formal deductive systems that admit intermediary truth-values, as well as the various methods based on them." (Radim Belohlavek & George J Klir, "Concepts and Fuzzy Logic", 2011)

Fuzzy Logic II

"Probability theory is an ideal tool for formalizing uncertainty in situations where class frequencies are known or where evidence is based on outcomes of a sufficiently long series of independent random experiments. Possibility theory, on the other hand, is ideal for formalizing incomplete information expressed in terms of fuzzy propositions." (George Klir, "Fuzzy sets and fuzzy logic", 1995)

"To select an appropriate fuzzy implication for approximate reasoning under each particular situation is a difficult problem. Although some theoretically supported guidelines are now available for some situations, we are still far from a general solution to this problem." (George Klir, "Fuzzy sets and fuzzy logic", 1995)

"As systems became more varied and more complex, we find that no single methodology suffices to deal with them. This is particularly true of what may be called information intelligent systems - systems which form the core of modern technology. To conceive, design, analyze and use such systems we frequently have to employ the totality of tools that are available. Among such tools are the techniques centered on fuzzy logic, neurocomputing, evolutionary computing, probabilistic computing and related methodologies. It is this conclusion that formed the genesis of the concept of soft computing." (Lotfi A Zadeh, "The Birth and Evolution of Fuzzy Logic: A personal perspective", 1999)

"[…] interval mathematics and fuzzy logic together can provide a promising alternative to mathematical modeling for many physical systems that are too vague or too complicated to be described by simple and crisp mathematical formulas or equations. When interval mathematics and fuzzy logic are employed, the interval of confidence and the fuzzy membership functions are used as approximation measures, leading to the so-called fuzzy systems modeling." (Guanrong Chen & Trung Tat Pham, "Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems", 2001)

"The fuzzy set theory is taking the same logical approach as what people have been doing with the classical set theory: in the classical set theory, as soon as the two-valued characteristic function has been defined and adopted, rigorous mathematics follows; in the fuzzy set case, as soon as a multi-valued characteristic function (the membership function) has been chosen and fixed, a rigorous mathematical theory can be fully developed." (Guanrong Chen & Trung Tat Pham, "Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems", 2001)

"Fuzziness describes the vagueness of an event, whereas chance describes the uncertainty in the occurrence of the event." (Timothy J Ross & W Jerry Parkinson, "Fuzzy Set Theory, Fuzzy Logic, and Fuzzy Systems", 2002)

"The vast majority of information that we have on most processes tends to be nonnumeric and nonalgorithmic. Most of the information is fuzzy and linguistic in form." (Timothy J Ross & W Jerry Parkinson, "Fuzzy Set Theory, Fuzzy Logic, and Fuzzy Systems", 2002)

"Fuzzy relations are developed by allowing the relationship between elements of two or more sets to take on an infinite number of degrees of relationship between the extremes of 'completely related' and 'not related', which are the only degrees of relationship possible in crisp relations. In this sense, fuzzy relations are to crisp relations as fuzzy sets are to crisp sets; crisp sets and relations are more constrained realizations of fuzzy sets and relations."  (Timothy J Ross & W Jerry Parkinson, "Fuzzy Set Theory, Fuzzy Logic, and Fuzzy Systems", 2002)

"Fuzzy models can provide good numerical approximation of functions as well as linguistic information over the behavior of the functions.  […] Fuzzy models with embedded linguistic interpretability are useful to extract knowledge from data. This knowledge is represented as a set of IF–THEN rules where the antecedents and the consequences are semantically meaningful." (Jairo Espinosa et al, "Fuzzy Logic, Identification and Predictive Control", 2005)

"Fuzzy models should make good predictions even when they are asked to predict on regions that were not excited during the construction of the model. The generalization capabilities can be controlled by an appropriate initialization of the consequences (prior knowledge) and the use of the recursive least squares to improve the prior choices. The prior knowledge can be obtained from the data." (Jairo Espinosa et al, "Fuzzy Logic, Identification and Predictive Control", 2005)

Fuzzy Logic I

"A fuzzy set is a class of objects with a continuum of grades of membership. Such a set is characterized by a membership (characteristic) function which assigns to each object a grade of membership ranging between zero and one. The notions of inclusion, union, intersection, complement, relation, convexity, etc., are extended to such sets, and various properties of these notions in the context of fuzzy sets are established. In particular, a separation theorem for convex fuzzy sets is proved without requiring that the fuzzy sets be disjoint." (Lotfi A Zadeh, "Fuzzy Sets", 1965)

"The notion of a fuzzy set provides a convenient point of departure for the construction of a conceptual framework which parallels in many respects the framework used in the case of ordinary sets, but is more general than the latter and, potentially, may prove to have a much wider scope of applicability, particularly in the fields of pattern classification and information processing. Essentially, such a framework provides a natural way of dealing with problems in which the source of imprecision is the absence of sharply denned criteria of class membership rather than the presence of random variables." (Lotfi A Zadeh, "Fuzzy Sets", 1965)

"In general, complexity and precision bear an inverse relation to one another in the sense that, as the complexity of a problem increases, the possibility of analysing it in precise terms diminishes. Thus 'fuzzy thinking' may not be deplorable, after all, if it makes possible the solution of problems which are much too complex for precise analysis." (Lotfi A Zadeh, "Fuzzy languages and their relation to human intelligence", 1972)

"Let me say quite categorically that there is no such thing as a fuzzy concept. [...] We do talk about fuzzy things but they are not scientific concepts. Some people in the past have discovered certain interesting things, formulated their findings in a non-fuzzy way, and therefore we have progressed in science." (Rudolf E Kálmán, 1972)

"[Fuzzy logic is] a logic whose distinguishing features are (1) fuzzy truth-values expressed in linguistic terms, e. g., true, very true, more or less true, or somewhat true, false, nor very true and not very false, etc.; (2) imprecise truth tables; and (3) rules of inference whose validity is relative to a context rather than exact." (Lotfi A. Zadeh, "Fuzzy logic and approximate reasoning", 1975)

"[...] much of the information on which human decisions are based is possibilistic rather than probabilistic in nature, and the intrinsic fuzziness of natural languages - which is a logical consequence of the necessity to express information in a summarized form - is, in the main, possibilistic in origin." (Lotfi A Zadeh, "Fuzzy Sets as the Basis for a Theory of Possibility", Fuzzy Sets and Systems, 1978) 

"Philosophical objections may be raised by the logical implications of building a mathematical structure on the premise of fuzziness, since it seems (at least superficially) necessary to require that an object be or not be an element of a given set. From an aesthetic viewpoint, this may be the most satisfactory state of affairs, but to the extent that mathematical structures are used to model physical actualities, it is often an unrealistic requirement. [...] Fuzzy sets have an intuitively plausible philosophical basis. Once this is accepted, analytical and practical considerations concerning fuzzy sets are in most respects quite orthodox." (James Bezdek, 1981)

"Fuzziness, then, is a concomitant of complexity. This implies that as the complexity of a task, or of a system for performing that task, exceeds a certain threshold, the system must necessarily become fuzzy in nature. Thus, with the rapid increase in the complexity of the information processing tasks which the computers are called upon to perform, we are reaching a point where computers will have to be designed for processing of information in fuzzy form. In fact, it is the capability to manipulate fuzzy concepts that distinguishes human intelligence from the machine intelligence of current generation computers. Without such capability we cannot build machines that can summarize written text, translate well from one natural language to another, or perform many other tasks that humans can do with ease because of their ability to manipulate fuzzy concepts." (Lotfi A Zadeh, "The Birth and Evolution of Fuzzy Logic", 1989)

"It is important to observe that there is an intimate connection between fuzziness and complexity. Thus, a basic characteristic of the human brain, a characteristic shared in varying degrees with all information processing systems, is its limited capacity to handle classes of high cardinality, that is, classes having a large number of members. Consequently, when we are presented with a class of very high cardinality, we tend to group its elements together into subclasses in such a way as to reduce the complexity of the information processing task involved. When a point is reached where the cardinality of the class of subclasses exceeds the information handling capacity of the human brain, the boundaries of the subclasses are forced to become imprecise and fuzziness becomes a manifestation of this imprecision." (Lotfi A Zadeh, "The Birth and Evolution of Fuzzy Logic", 1989)

"A fuzzy set can be defined mathematically by assigning to each possible individual in the universe of discourse a value representing its grade of membership in the fuzzy set. This grade corresponds to the degree to which that individual is similar or compatible with the concept represented by the fuzzy set. Thus, individuals may belong in the fuzzy act to a greater or lesser degree as indicated by a larger or smaller membership grade. As already mentioned, these membership grades are very often represented by real-number values ranging in the closed interval between 0 and 1." (George J Klir & Bo Yuan, "Fuzzy Sets and Fuzzy Logic: Theory and Applications", 1995)


03 December 2020

Guanrong Chen - Collected Quotes

"Basically, the aim of fuzzy control systems theory is to extend the existing successful conventional control systems techniques and methods as much as possible, and to develop many new and special-purposed ones, for a much larger class of complex, complicated, and ill-modeled systems - fuzzy systems." (Guanrong Chen & Trung Tat Pham, "Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems", 2001)

"Classical logic, as common practice, deals with propositions (e.g., conclusions or decisions) that are either true or false. Each proposition has an opposite. This classical logic, therefore, deals with combinations of variables that represent propositions. As each variable stands for a hypothetical proposition, any combination of them eventually assumes a truth value (either true or false), but never is in between or both (i.e., is not true and false at the same time)." (Guanrong Chen & Trung Tat Pham, "Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems", 2001)

"Conventional mathematics and control theory exclude vagueness and contradictory conditions. As a consequence, conventional control systems theory does not attempt to study any formulation, analysis, and control of what has been called fuzzy systems, which may be vague, incomplete, linguistically described, or even inconsistent." (Guanrong Chen & Trung Tat Pham, "Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems", 2001)

"Following the traditional classification in the field of control systems, a system that describes the input-output behavior in a way similar to a mathematical mapping without involving a differential operator or equation is called a static system. In contrast, a system described by a differential operator or equation is called a dynamic system." (Guanrong Chen & Trung Tat Pham, "Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems", 2001)

"[…] interval mathematics and fuzzy logic together can provide a promising alternative to mathematical modeling for many physical systems that are too vague or too complicated to be described by simple and crisp mathematical formulas or equations. When interval mathematics and fuzzy logic are employed, the interval of confidence and the fuzzy membership functions are used as approximation measures, leading to the so-called fuzzy systems modeling." (Guanrong Chen & Trung Tat Pham, "Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems", 2001)

"Modeling, in a general sense, refers to the establishment of a description of a system (a plant, a process, etc.) in mathematical terms, which characterizes the input-output behavior of the underlying system. To describe a physical system […] we have to use a mathematical formula or equation that can represent the system both qualitatively and quantitatively. Such a formulation is a mathematical representation, called a mathematical model, of the physical system." (Guanrong Chen & Trung Tat Pham, "Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems", 2001)

"Most physical systems, particularly those complex ones, are extremely difficult to model by an accurate and precise mathematical formula or equation due to the complexity of the system structure, nonlinearity, uncertainty, randomness, etc. Therefore, approximate modeling is often necessary and practical in real-world applications. Intuitively, approximate modeling is always possible. However, the key questions are what kind of approximation is good, where the sense of 'goodness' has to be first defined, of course, and how to formulate such a good approximation in modeling a system such that it is mathematically rigorous and can produce satisfactory results in both theory and applications." (Guanrong Chen & Trung Tat Pham, "Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems", 2001) 

"The fuzzy set theory is taking the same logical approach as what people have been doing with the classical set theory: in the classical set theory, as soon as the two-valued characteristic function has been defined and adopted, rigorous mathematics follows; in the fuzzy set case, as soon as a multi-valued characteristic function (the membership function) has been chosen and fixed, a rigorous mathematical theory can be fully developed." (Guanrong Chen & Trung Tat Pham, "Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems", 2001)

"The majority of fuzzy logic control systems are knowledge-based systems in that either their fuzzy models or their fuzzy logic controllers are described by fuzzy IF-THEN rules, which have to be established based on experts’ knowledge about the systems, controllers, performance, etc." (Guanrong Chen & Trung Tat Pham, "Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems", 2001)

George J Klir - Collected Quotes

"Applying this approach, systems belonging to different scientific disciplines are investigated in their natural forms. On the basis of experimental results, isomorphic relations between different systems are studied and, finally, some general principles applicable for all systems of a certain class are formulated." (George Klir, "An approach to general systems theory", 1969)

"In mathematics, logic, linguistics, and other abstract disciplines, the systems are not assigned to objects. They are defined by an enumeration of the variables, their admissible values, and their algebraic, topological, grammatical, and other properties which, in the given case, determine the relations between the variables under consideration." (George Klir, "An approach to general systems theory", 1969)

"Systems science is a science whose domain of inquiry consists of those properties of systems and associated problems that emanate from the general notion of systemhood." (George Klir, "Facets of Systems Science", 1991)

"The term system is unquestionably one of the most widely used terms not only in science, but in other areas of human endeavor as well. It is a highly overworked term, which enjoys different meanings under different circumstances and for different people. However, when separated from its specific connotations and uses, the term "system" is almost never explicitly defined." (George Klir, "Facets of Systems Science", 1991)

"What is systems science? This question, which I have been asked on countless occasions, can basically be answered either in terms of activities associated with systems science or in terms of the domain of its inquiry. The most natural answers to the question are, almost inevitably, the following definitions: Systems science is what systems scientists do when they claim they do science. Systems science is that field of scientific inquiry whose objects of study are systems." (George Klir, "Facets of Systems Science", 1991)

"A fuzzy set can be defined mathematically by assigning to each possible individual in the universe of discourse a value representing its grade of membership in the fuzzy set. This grade corresponds to the degree to which that individual is similar or compatible with the concept represented by the fuzzy set. Thus, individuals may belong in the fuzzy act to a greater or lesser degree as indicated by a larger or smaller membership grade. As already mentioned, these membership grades are very often represented by real-number values ranging in the closed interval between 0 and 1." (George J Klir & Bo Yuan, "Fuzzy Sets and Fuzzy Logic: Theory and Applications", 1995)

"Among the various paradigmatic changes in science and mathematics in this century, one such change concerns the concept of uncertainty. In science, this change has been manifested by a gradual transition from the traditional view, which insists that uncertainty is undesirable in science and should be avoided by all possible means, to an alternative view, which is tolerant of uncertainty and insists that science cannot avoid it. According to the traditional view, science should strive for certainty in all its manifestations (precision, specificity, sharpness, consistency, etc.); hence, uncertainty (imprecision, nonspecificity, vagueness, inconsistency, etc.) is regarded as unscientific. According to the alternative (or modem) view, uncertainty is considered essential to science; it is not only an unavoidable plague, but it has, in fact, a great utility.(George Klir, "Fuzzy sets and fuzzy logic", 1995)

"In constructing a model, we always attempt to maximize its usefulness. This aim is closely connected with the relationship among three key characteristics of every systems model: complexity, credibility, and uncertainty. This relationship is not as yet fully understood. We only know that uncertainty (predictive, prescriptive, etc.) has a pivotal role in any efforts to maximize the usefulness of systems models. Although usually (but not always) undesirable when considered alone, uncertainty becomes very valuable when considered in connection to the other characteristics of systems models: in general, allowing more uncertainty tends to reduce complexity and increase credibility of the resulting model. Our challenge in systems modelling is to develop methods by which an optimal level of allowable uncertainty can be estimated for each modelling problem." (George J Klir & Bo Yuan, "Fuzzy Sets and Fuzzy Logic: Theory and Applications", 1995)

"In spite of the insurmountable computational limits, we continue to pursue the many problems that possess the characteristics of organized complexity. These problems are too important for our well being to give up on them. The main challenge in pursuing these problems narrows down fundamentally to one question: how to deal with systems and associated problems whose complexities are beyond our information processing limits? That is, how can we deal with these problems if no computational power alone is sufficient?"  (George Klir, "Fuzzy sets and fuzzy logic", 1995)

"Probability theory is an ideal tool for formalizing uncertainty in situations where class frequencies are known or where evidence is based on outcomes of a sufficiently long series of independent random experiments. Possibility theory, on the other hand, is ideal for formalizing incomplete information expressed in terms of fuzzy propositions." (George Klir, "Fuzzy sets and fuzzy logic", 1995)

"To select an appropriate fuzzy implication for approximate reasoning under each particular situation is a difficult problem. Although some theoretically supported guidelines are now available for some situations, we are still far from a general solution to this problem." (George Klir, "Fuzzy sets and fuzzy logic", 1995)

"Intuition, insight, and the ability of global comprehension are possibly the most valuable assets of the human mind, particularly one that is appropriately trained." (George J Klir & Doug Elias, "Architecture of Systems Problem Solving" 2nd Ed, 2003) 

"Mathematics can roughly be divided into pure and applied. Pure mathematics is basically oriented to the development of various axiomatic theories, regardless of whether or not they have any real-world meaning. The proper activity of the pure mathematician is thus to derive theorems from postulated assumptions (axioms), and it is not his or her concern to determine whether there is some interpretation of the theory in which the assumptions are true. […] The role of applied mathematics is to search for practical interpretations of the various mathematical theories and, when such interpretations are found, to further develop the theories into useful methodological tools for dealing with the interpreted systems and associated problems. As such, applied mathematics is oriented to the development of methods based on specific mathematical theories and their use in as many interpreted areas as possible." (George J Klir & Doug Elias, "Architecture of Systems Problem Solving" 2nd Ed, 2003) 

"Systems whose variables are classified into input and output variables are called directed systems; those for which no such classification is given are called neutral systems. A number of additional distinctions are recognized for state sets associated with the involved variables (basic or supporting) and provide a basis for further methodological classification of source systems. They include, for in￾stance, the distinctions between crisp and fuzzy variables, discrete and continuous variables, and variables of different scales." (George J Klir & Doug Elias, "Architecture of Systems Problem Solving" 2nd Ed, 2003)

"The aim of architectural design is to prepare overall specifications, derived from the needs and desires of the user, for subsequent design and construction stages. The first task for the architect in each design project is thus to determine what the real needs and desires of the user are […]" (George J Klir & Doug Elias, "Architecture of Systems Problem Solving" 2nd Ed, 2003)

"The domain of systems science consists thus of all kinds of relational properties which are valid for particular classes of systems, or, in some rare instances, are valid for all systems. The chosen relational classification of systems determines the way in which the domain of systems is divided into subdomains, in a similar fashion as the domain of traditional science has been divided into subdomains of the various disciplines and specializations." (George J Klir & Doug Elias, "Architecture of Systems Problem Solving" 2nd Ed, 2003) 

"The principle of maximum entropy is employed for estimating unknown probabilities (which cannot be derived deductively) on the basis of the available information. According to this principle, the estimated probability distribution should be such that its entropy reaches maximum within the constraints of the situation, i.e., constraints that represent the available information. This principle thus guarantees that no more information is used in estimating the probabilities than available." (George J Klir & Doug Elias, "Architecture of Systems Problem Solving" 2nd Ed, 2003) 

"The principle of minimum entropy is employed in the formulation of resolution forms and related problems. According to this principle, the entropy of the estimated probability distribution, conditioned by a particular classification of the given events (e.g., states of the variable involved), is minimum subject to the constraints of the situation. This principle thus guarantees that all available information is used, as much as possible within the given constraints (e.g., required number of states), in the estimation of the unknown probabilities." (George J Klir & Doug Elias, "Architecture of Systems Problem Solving" 2nd Ed, 2003)

"The reconstruction problem can be stated as follows: Given a behavior system, viewed as an overall system, determine which sets of its subsystems, each viewed as a reconstruction hypothesis, are adequate for reconstructing the given system with an acceptable degree of approximation, solely from the information contained in the subsystems." (George J Klir & Doug Elias, "Architecture of Systems Problem Solving" 2nd Ed, 2003)

"Nevertheless, the use of fuzzy logic is supported by at least the following three arguments. First, fuzzy logic is rooted in the intuitively appealing idea that the truths of propositions used by humans are a matter of degree. An important consequence is that the basic principles and concepts of fuzzy logic are easily understood. Second, fuzzy logic has led to many successful applications, including many commercial products, in which the crucial part relies on representing and dealing with statements in natural language that involve vague terms. Third, fuzzy logic is a proper generalization of classical logic, follows an agenda similar to that of classical logic, and has already been highly developed. An important consequence is that fuzzy logic extends the rich realm of applications of classical logic to applications in which the bivalent character of classical logic is a limiting factor." (Radim Belohlavek & George J Klir, "Concepts and Fuzzy Logic", 2011)

"The principal idea employed by fuzzy logic is to allow for a partially ordered scale of truth-values, called also truth degrees, which contains the values representing false and true , but also some additional, intermediary truth degrees. That is, the set {0,1} of truth-values of classical logic, where 0 and 1 represent false and true , respectively, is replaced in fuzzy logic by a partially ordered scale of truth degrees with the smallest degree being 0 and the largest one being 1." (Radim Belohlavek & George J Klir, "Concepts and Fuzzy Logic", 2011)

"We use the term fuzzy logic to refer to all aspects of representing and manipulating knowledge that employ intermediary truth-values. This general, commonsense meaning of the term fuzzy logic encompasses, in particular, fuzzy sets, fuzzy relations, and formal deductive systems that admit intermediary truth-values, as well as the various methods based on them." (Radim Belohlavek & George J Klir, "Concepts and Fuzzy Logic", 2011)

24 November 2020

Lotfi A Zadeh - Collected Quotes

"A fuzzy set is a class of objects with a continuum of grades of membership. Such a set is characterized by a membership (characteristic) function which assigns to each object a grade of membership ranging between zero and one. The notions of inclusion, union, intersection, complement, relation, convexity, etc., are extended to such sets, and various properties of these notions in the context of fuzzy sets are established. In particular, a separation theorem for convex fuzzy sets is proved without requiring that the fuzzy sets be disjoint." (Lotfi A Zadeh, "Fuzzy Sets", 1965)

"The notion of a fuzzy set provides a convenient point of departure for the construction of a conceptual framework which parallels in many respects the framework used in the case of ordinary sets, but is more general than the latter and, potentially, may prove to have a much wider scope of applicability, particularly in the fields of pattern classification and information processing. Essentially, such a framework provides a natural way of dealing with problems in which the source of imprecision is the absence of sharply denned criteria of class membership rather than the presence of random variables." (Lotfi A Zadeh, "Fuzzy Sets", 1965)

"In general, complexity and precision bear an inverse relation to one another in the sense that, as the complexity of a problem increases, the possibility of analysing it in precise terms diminishes. Thus 'fuzzy thinking' may not be deplorable, after all, if it makes possible the solution of problems which are much too complex for precise analysis." (Lotfi A Zadeh, "Fuzzy languages and their relation to human intelligence", 1972)

"As the complexity of a system increases, our ability to make precise and yet significant statements about its behavior diminishes until a threshold is reached beyond which precision and significance (or relevance) become almost mutually exclusive characteristics." (Lotfi A Zadeh, 1973)

"The closer one looks at a real-world problem, the fuzzier becomes its solution." (Lotfi A Zadeh, 1973)

"[Fuzzy logic is] a logic whose distinguishing features are (1) fuzzy truth-values expressed in linguistic terms, e. g., true, very true, more or less true, or somewhat true, false, nor very true and not very false, etc.; (2) imprecise truth tables; and (3) rules of inference whose validity is relative to a context rather than exact." (Lotfi A Zadeh, "Fuzzy logic and approximate reasoning", 1975)

"[...] much of the information on which human decisions are based is possibilistic rather than probabilistic in nature, and the intrinsic fuzziness of natural languages - which is a logical consequence of the necessity to express information in a summarized form - is, in the main, possibilistic in origin." (Lotfi A Zadeh, "Fuzzy Sets as the Basis for a Theory of Possibility", Fuzzy Sets and Systems, 1978) 

"Fuzziness, then, is a concomitant of complexity. This implies that as the complexity of a task, or of a system for performing that task, exceeds a certain threshold, the system must necessarily become fuzzy in nature. Thus, with the rapid increase in the complexity of the information processing tasks which the computers are called upon to perform, we are reaching a point where computers will have to be designed for processing of information in fuzzy form. In fact, it is the capability to manipulate fuzzy concepts that distinguishes human intelligence from the machine intelligence of current generation computers. Without such capability we cannot build machines that can summarize written text, translate well from one natural language to another, or perform many other tasks that humans can do with ease because of their ability to manipulate fuzzy concepts." (Lotfi A Zadeh, "The Birth and Evolution of Fuzzy Logic", 1989)

"In essence, a basic assumption in classical mathematics is that a concept must admit of precise definition which partitions the class of all objects into two classes: (i) those objects which are instances of the concept; and (ii) those which are not, with no borderline cases allowed. For example, a function is either continuous or discontinuous; it cannot be continuous to a degree. Similarly, a matrix is either symmetric or not symmetric; it cannot be somewhat symmetric or more or asymmetric or symmetric to a degree." (Lotfi A Zadeh, "The Birth and Evolution of Fuzzy Logic", 1989)

"It is important to observe that there is an intimate connection between fuzziness and complexity. Thus, a basic characteristic of the human brain, a characteristic shared in varying degrees with all information processing systems, is its limited capacity to handle classes of high cardinality, that is, classes having a large number of members. Consequently, when we are presented with a class of very high cardinality, we tend to group its elements together into subclasses in such a way as to reduce the complexity of the information processing task involved. When a point is reached where the cardinality of the class of subclasses exceeds the information handling capacity of the human brain, the boundaries of the subclasses are forced to become imprecise and fuzziness becomes a manifestation of this imprecision." (Lotfi A Zadeh, "The Birth and Evolution of Fuzzy Logic", 1989)

"As systems became more varied and more complex, we find that no single methodology suffices to deal with them. This is particularly true of what may be called information intelligent systems - systems which form the core of modern technology. To conceive, design, analyze and use such systems we frequently have to employ the totality of tools that are available. Among such tools are the techniques centered on fuzzy logic, neurocomputing, evolutionary computing, probabilistic computing and related methodologies. It is this conclusion that formed the genesis of the concept of soft computing." (Lotfi A Zadeh, "The Birth and Evolution of Fuzzy Logic: A personal perspective", 1999)

"[...] fuzzy logic [FL] has many distinct facets - facets which overlap and have unsharp boundaries. Among these facets there are four that stand out in importance. They are (i) the logical facet; (ii) the set-theoretic facet: (iii) the relational facet, and (iv) the epistemic facet. […] The logical facet of FL, FL/L, is a logical system or, more accurately, a collection of logical systems which includes as a special case both two-valued and multiple-valued systems. […] The set-theoretic facet of FL, FL/S, is concerned with classes or sets whose boundaries are not sharply defined. […] The relational facet of FL, FL/R, is concerned in the main with representation and manipulation of imprecisely defined functions and relations. […] The epistemic facet of FL, FL/E, is linked to its logical facet and is centered on applications of FL to knowledge representation, information systems, fuzzy databases and the theories of possibility imprecise probabilities." (Lotfi A Zadeh, "The Birth and Evolution of Fuzzy Logic: A personal perspective", 1999)

"In science, it is a long-standing tradition to deal with perceptions by converting them into measurements. But what is becoming increasingly evident is that, to a much greater extent than is generally recognized, conversion of perceptions into measurements is infeasible, unrealistic or counter-productive. With the vast computational power at our command, what is becoming feasible is a counter-traditional move from measurements to perceptions. […] To be able to compute with perceptions it is necessary to have a means of representing their meaning in a way that lends itself to computation." (Lotfi A Zadeh, "The Birth and Evolution of Fuzzy Logic: A personal perspective", 1999)

"A concept which has a position of centrality in fuzzy logic is that of a fuzzy set. Informally, a fuzzy set is a class with a fuzzy boundary, implying a gradual transition from membership to nonmembership. A fuzzy set is precisiated through graduation, that is, through association with a scale of grades of membership. Thus, membership in a fuzzy set is a matter of degree. Importantly, in fuzzy logic everything is or is allowed to be graduated, that is, be a matter of degree. Furthermore, in fuzzy logic everything is or is allowed to be granulated, with a granule being a clump of attribute-values drawn together by indistinguishability, equivalence, similarity, proximity or functionality. Graduation and granulation form the core of fuzzy logic. Graduated granulation is the basis for the concept of a linguistic variable – a variable whose values are words rather than numbers. The concept of a linguistic variable is employed in almost all applications of fuzzy logic." (Lofti A Zadeh, "Fuzzy Logic", 2009) 

"In essence, logic is concerned with formalization of reasoning. Correspondently, fuzzy logic is concerned with formalization of fuzzy reasoning, with the understanding that precise reasoning is a special case of fuzzy reasoning." (Lofti A Zadeh, "Fuzzy Logic", 2009

"Science deals not with reality but with models of reality. In large measure, scientific progress is driven by a quest for better models of reality. In the real world, imprecision, uncertainty and complexity have a pervasive presence. In this setting, construction of better models of reality requires a better understanding of how to deal effectively with imprecision, uncertainty and complexity. To a significant degree, development of fuzzy logic has been, and continues to be, motivated by this need." (Lofti A Zadeh, "Fuzzy Logic", 2009) 

"As complexity rises, precise statements lose meaning and meaningful statements lose precision." (Lotfi A Zadeh) 

Related Posts Plugin for WordPress, Blogger...

On Leonhard Euler

"I have been able to solve a few problems of mathematical physics on which the greatest mathematicians since Euler have struggled in va...