Showing posts with label chaos. Show all posts
Showing posts with label chaos. Show all posts

13 August 2025

On Initial Conditions (2010-2019)

"A system of equations is deemed most elegant if it contains no un- necessary terms or parameters and if the parameters that remain have a minimum of digits. [...] Just as one can find the most elegant set of parameters for a given system, it is possible to find the most elegant set of initial conditions within the basin of attraction or chaotic sea. However, it is usually more useful to have initial conditions that are close to the attractor to reduce the transients that would otherwise occur."  (Julien C Sprott, "Elegant Chaos: Algebraically Simple Chaotic Flows", 2010)

"Another property of bounded systems is that, unless the trajectory attracts to an equilibrium point where it stalls and remains forever, the points must continue moving forever with the flow. However, if we consider two initial conditions separated by a small distance along the direction of the flow, they will maintain their average separation forever since they are subject to the exact same flow but only delayed slightly in time. This fact implies that one of the Lyapunov exponents for a bounded continuous flow must be zero unless the flow attracts to a stable equilibrium." (Julien C Sprott, "Elegant Chaos: Algebraically Simple Chaotic Flows", 2010)

"In a chaotic system, there must be stretching to cause the exponential separation of initial conditions but also folding to keep the trajectories from moving off to infinity. The folding requires that the equations of motion contain at least one nonlinearity, leading to the important principle that chaos is a property unique to nonlinear dynamical systems. If a system of equations has only linear terms, it cannot exhibit chaos no matter how complicated or high-dimensional it may be." (Julien C Sprott, "Elegant Chaos: Algebraically Simple Chaotic Flows", 2010)

"Most systems in nature are inherently nonlinear and can only be described by nonlinear equations, which are difficult to solve in a closed form. Non-linear systems give rise to interesting phenomena such as chaos, complexity, emergence and self-organization. One of the characteristics of non-linear systems is that a small change in the initial conditions can give rise to complex and significant changes throughout the system. This property of a non-linear system such as the weather is known as the butterfly effect where it is purported that a butterfly flapping its wings in Japan can give rise to a tornado in Kansas. This unpredictable behaviour of nonlinear dynamical systems, i.e. its extreme sensitivity to initial conditions, seems to be random and is therefore referred to as chaos. This chaotic and seemingly random behaviour occurs for non-linear deterministic system in which effects can be linked to causes but cannot be predicted ahead of time." (Robert K Logan, "The Poetry of Physics and The Physics of Poetry", 2010)

"The main defining feature of chaos is the sensitive dependence on initial conditions. Two nearby initial conditions on the attractor or in the chaotic sea separate by a distance that grows exponentially in time when averaged along the trajectory, leading to long-term unpredictability. The Lyapunov exponent is the average rate of growth of this distance, with a positive value signifying sensitive dependence (chaos), a zero value signifying periodicity (or quasiperiodicity), and a negative value signifying a stable equilibrium." (Julien C Sprott, "Elegant Chaos: Algebraically Simple Chaotic Flows", 2010)

"Complexity carries with it a lack of predictability different to that of chaotic systems, i.e. sensitivity to initial conditions. In the case of complexity, the lack of predictability is due to relevant interactions and novel information created by them." (Carlos Gershenson, "Understanding Complex Systems", 2011)

"The key characteristic of 'chaotic solutions' is their sensitivity to initial conditions: two sets of initial conditions close together can generate very different solution trajectories, which after a long time has elapsed will bear very little relation to each other. Twins growing up in the same household will have a similar life for the childhood years but their lives may diverge completely in the fullness of time. Another image used in conjunction with chaos is the so-called 'butterfly effect' – the metaphor that the difference between a butterfly flapping its wings in the southern hemisphere (or not) is the difference between fine weather and hurricanes in Europe." (Tony Crilly, "Fractals Meet Chaos" [in "Mathematics of Complexity and Dynamical Systems"], 2012)

"The most basic tenet of chaos theory is that a small change in initial conditions - a butterfly flapping its wings in Brazil - can produce a large and unexpected divergence in outcomes - a tornado in Texas. This does not mean that the behavior of the system is random, as the term 'chaos' might seem to imply. Nor is chaos theory some modern recitation of Murphy’s Law ('whatever can go wrong will go wrong'). It just means that certain types of systems are very hard to predict." (Nate Silver, "The Signal and the Noise: Why So Many Predictions Fail-but Some Don't", 2012)

"One of the remarkable features of these complex systems created by replicator dynamics is that infinitesimal differences in starting positions create vastly different patterns. This sensitive dependence on initial conditions is often called the butterfly-effect aspect of complex systems - small changes in the replicator dynamics or in the starting point can lead to enormous differences in outcome, and they change one’s view of how robust the current reality is. If it is complex, one small change could have led to a reality that is quite different." (David Colander & Roland Kupers, "Complexity and the art of public policy : solving society’s problems from the bottom up", 2014)

"The sensitivity of chaotic systems to initial conditions is particularly well known under the moniker of the 'butterfly effect', which is a metaphorical illustration of the chaotic nature of the weather system in which 'a flap of a butterfly’s wings in Brazil could set off a tornado in Texas'. The meaning of this expression is that, in a chaotic system, a small perturbation could eventually cause very large-scale difference in the long run." (Hiroki Sayama, "Introduction to the Modeling and Analysis of Complex Systems", 2015)

"A system governed by a deterministic theory can only evolve along a single trajectory - namely, that dictated by its laws and initial conditions; all other trajectories are excluded. Symmetry principles, on the other hand, fit the freedom-inducing model. Rather than distinguishing what is excluded from what is bound to happen, these principles distinguish what is excluded from what is possible. In other words, although they place restrictions on what is possible, they do not usually determine a single trajectory." (Yemima Ben-Menahem, "Causation in Science", 2018)

On Initial Conditions (-1989)

"Certainly, if a system moves under the action of given forces and its initial conditions have given values in the mathematical sense, its future motion and behavior are exactly known. But, in astronomical problems, the situation is quite different: the constants defining the motion are only physically known, that is with some errors; their sizes get reduced along the progresses of our observing devices, but these errors can never completely vanish." (Jacques Hadamard, "Les surfaces à courbures opposées et leurs lignes géodésiques", Journal de mathématiques pures et appliquées 5e (4), 1898)

"An exceedingly small cause which escapes our notice determines a considerable effect that we cannot fail to see, and then we say the effect is due to chance. If we knew exactly the laws of nature and the situation of the universe at the initial moment, we could predict exactly the situation of that same universe at a succeeding moment. But even if it were the case that the natural laws had no longer any secret for us, we could still only know the initial situation 'approximately'. If that enabled us to predict the succeeding situation with 'the same approximation', that is all we require, and we should say that the phenomenon had been predicted, that it is governed by laws. But it is not always so; it may happen that small differences in the initial conditions produce very great ones in the final phenomena. A small error in the former will produce an enormous error in the latter. Prediction becomes impossible, and we have the fortuitous phenomenon. (Jules H Poincaré, "Science and Method", 1908) 

"The predictions of physical theories for the most part concern situations where initial conditions can be precisely specified. If such initial conditions are not found in nature, they can be arranged." (Anatol Rapoport, "The Search for Simplicity", 1956)

"Given an approximate knowledge of a system's initial conditions and an understanding of natural law, one can calculate the approximate behavior of the system. This assumption lay at the philosophical heart of science." (James Gleick, Chaos: Making a New Science, 1987)

"The principle of maximum diversity operates both at the physical and at the mental level. It says that the laws of nature and the initial conditions are such as to make the universe as interesting as possible.  As a result, life is possible but not too easy. Always when things are dull, something new turns up to challenge us and to stop us from settling into a rut. Examples of things which make life difficult are all around us: comet impacts, ice ages, weapons, plagues, nuclear fission, computers, sex, sin and death.  Not all challenges can be overcome, and so we have tragedy. Maximum diversity often leads to maximum stress. In the end we survive, but only by the skin of our teeth." (Freeman J Dyson, "Infinite in All Directions", 1988)

"Due to this sensitivity any uncertainty about seemingly insignificant digits in the sequence of numbers which defines an initial condition, spreads with time towards the significant digits, leading to chaotic behavior. Therefore there is a change in the information we have about the state of the system. This change can be thought of as a creation of information if we consider that two initial conditions that are different but indistinguishable (within a certain precision), evolve into distinguishable states after a finite time." (David Ruelle, "Chaotic Evolution and Strange Attractors: The statistical analysis of time series for deterministic nonlinear systems", 1989)

"Now, the main problem with a quasiperiodic theory of turbulence (putting several oscillators together) is the following: when there is a nonlinear coupling between the oscillators, it very often happens that the time evolution does not remain quasiperiodic. As a matter of fact, in this latter situation, one can observe the appearance of a feature which makes the motion completely different from a quasiperiodic one. This feature is called sensitive dependence on initial conditions and turns out to be the conceptual key to reformulating the problem of turbulence." (David Ruelle, "Chaotic Evolution and Strange Attractors: The statistical analysis of time series for deterministic nonlinear systems", 1989)

On Initial Conditions (2000-2009)

"Chaos theory reconciles our intuitive sense of free will with the deterministic laws of nature. However, it has an even deeper philosophical ramification. Not only do we have freedom to control our actions, but also the sensitivity to initial conditions implies that even our smallest act can drastically alter the course of history, for better or for worse. Like the butterfly flapping its wings, the results of our behavior are amplified with each day that passes, eventually producing a completely different world than would have existed in our absence!" (Julien C Sprott, "Strange Attractors: Creating Patterns in Chaos", 2000)

"In chaology, the initial conditions are likely to be out of all proportion to the consequences; indeed, origins are much more random, unpredictable, and unknowable and seemingly much less directly causal than in orderly systems. The sensitive dependence upon initial conditions means that similar phenomena or systems will never be wholly identical and that the results of those small initial changes may be radically different. These unpredictable initial conditions may, for instance, lead to the so-called butterfly effect, in which an extremely minor and remote act causes disruptions of a huge magnitude." (Gordon E Slethaug, "Beautiful Chaos: Chaos theory and metachaotics in recent American fiction", 2000)

"We often wonder why the more complex systems seem to indicate a preferred direction of time, or an arrow of time, whereas their elementary counterparts do not. […] This has to do with the if-then nature of physics questions. Anything we observe involves laws of motion but also particular initial conditions. […] The initial conditions are what make a situation look peculiar when we time reverse it." (Leon M Lederman & Christopher T Hill, "Symmetry and the Beautiful Universe", 2004)

"Much of chaos as a science is connected with the notion of ‘sensitive dependence on initial conditions.’ Technically, scientists term as ‘chaotic’ those nonrandom complicated motions that exhibit a very rapid growth of errors that, despite perfect determinism, inhibits any pragmatic ability to render accurate long-term prediction. […] The most important fact is that there is a discernibly precise ‘moment’, with a corresponding behavior, which is neither chaotic nor nonchaotic, at which this transition occurs. Yes, errors do grow, but only in a marginally predictable, rather than in an unpredictable, fashion. In this state of marginal predictability inheres embryonically all the seeds of the chaotic behavior to come. That is, this transitional point, the legitimate child of universality, without full-fledged sensitive dependence upon initial conditions, knows fully how to dictate to its progeny in turn how this latter phenomenon must unfold. For a certain range of possible behaviors of strongly nonlinear systems - specifically, this range surrounding the transition to chaos - the information obtained just at the transition point fully organizes the spectrum of behaviors that these chaotic systems can exhibit." (Ray Kurzweil, "The Singularity is Near", 2005)

"Chaos can leave statistical footprints that look like noise. This can arise from simple systems that are deterministic and not random. [...] The surprising mathematical fact is that most systems are chaotic. Change the starting value ever so slightly and soon the system wanders off on a new chaotic path no matter how close the starting point of the new path was to the starting point of the old path. Mathematicians call this sensitivity to initial conditions but many scientists just call it the butterfly effect. And what holds in math seems to hold in the real world - more and more systems appear to be chaotic." (Bart Kosko, "Noise", 2006)

"Physically, the stability of the dynamics is characterized by the sensitivity to initial conditions. This sensitivity can be determined for statistically stationary states, e.g. for the motion on an attractor. If this motion demonstrates sensitive dependence on initial conditions, then it is chaotic. In the popular literature this is often called the 'Butterfly Effect', after the famous 'gedankenexperiment' of Edward Lorenz: if a perturbation of the atmosphere due to a butterfly in Brazil induces a thunderstorm in Texas, then the dynamics of the atmosphere should be considered as an unpredictable and chaotic one. By contrast, stable dependence on initial conditions means that the dynamics is regular." (Ulrike Feudel et al, "Strange Nonchaotic Attractors", 2006)

"This phenomenon, common to chaos theory, is also known as sensitive dependence on initial conditions. Just a small change in the initial conditions can drastically change the long-term behavior of a system. Such a small amount of difference in a measurement might be considered experimental noise, background noise, or an inaccuracy of the equipment." (Greg Rae, Chaos Theory: A Brief Introduction, 2006)

"Global stability of an equilibrium removes the restrictions on the initial conditions. In global asymptotic stability, solutions approach the equilibrium for all initial conditions. [...] In a study of local stability, first equilibrium solutions are identified, then linearization techniques are applied to determine the behavior of solutions near the equilibrium. If the equilibrium is stable for any set of initial conditions, then this type of stability is referred to as global stability." (Linda J S Allen, "An Introduction to Mathematical Biology", 2007)

"Sensitive dependence on initial conditions is one of the criteria necessary for showing a solution to a difference equation exhibits chaotic behavior." (Linda J S Allen, "An Introduction to Mathematical Biology", 2007)

"A characteristic of such chaotic dynamics is an extreme sensitivity to initial conditions (exponential separation of neighboring trajectories), which puts severe limitations on any forecast of the future fate of a particular trajectory. This sensitivity is known as the ‘butterfly effect’: the state of the system at time t can be entirely different even if the initial conditions are only slightly changed, i.e., by a butterfly flapping its wings." (Hans J Korsch et al, "Chaos: A Program Collection for the PC", 2008) 

"The 'butterfly effect' is at most a hypothesis, and it was certainly not Lorenz’s intention to change it to a metaphor for the importance of small event. […] Dynamical systems that exhibit sensitive dependence on initial conditions produce remarkably different solutions for two initial values that are close to each other. Sensitive dependence on initial conditions is one of the properties to exhibit chaotic behavior. In addition, at least one further implicit assumption is that the system is bounded in some finite region, i.e., the system cannot blow up. When one uses expanding dynamics, a way of pull-back of too much expanded phase volume to some finite domain is necessary to get chaos." (Péter Érdi, "Complexity Explained", 2008)

"Chaos has three primary features: unpredictability, boundedness, and sensitivity to initial conditions. Unpredictability means that a sequence of numbers that is generated from a chaotic function does not repeat. This principle is perhaps a matter of degree, because some of the numbers could look as though they are recurring only because they are rounded to a convenient number of decimal points. [...] Boundedness means that, for all the unpredictability of motion, all points remain within certain boundaries. The principle of sensitivity to initial conditions means that two points that start off as arbitrarily close together become exponentially farther away from each other as the iteration process proceeds. This is a clear case of small differences producing a huge effect." (Stephen J Guastello & Larry S Liebovitch, "Introduction to Nonlinear Dynamics and Complexity" [in "Chaos and Complexity in Psychology"], 2009)

On Initial Conditions (1990-1999)

"Although a system may exhibit sensitive dependence on initial condition, this does not mean that everything is unpredictable about it. In fact, finding what is predictable in a background of chaos is a deep and important problem. (Which means that, regrettably, it is unsolved.) In dealing with this deep and important problem, and for want of a better approach, we shall use common sense." (David Ruelle, "Chance and Chaos", 1991)

"Everywhere […] in the Universe, we discern that closed physical systems evolve in the same sense from ordered states towards a state of complete disorder called thermal equilibrium. This cannot be a consequence of known laws of change, since […] these laws are time symmetric- they permit […] time-reverse. […] The initial conditions play a decisive role in endowing the world with its sense of temporal direction. […] some prescription for initial conditions is crucial if we are to understand […]" (John D Barrow, "Theories of Everything: The Quest for Ultimate Explanation", 1991)

"First, strange attractors look strange: they are not smooth curves or surfaces but have 'non-integer dimension' - or, as Benoit Mandelbrot puts it, they are fractal objects. Next, and more importantly, the motion on a strange attractor has sensitive dependence on initial condition. Finally, while strange attractors have only finite dimension, the time-frequency analysis reveals a continuum of frequencies." (David Ruelle, "Chance and Chaos", 1991)

"If we have several modes, oscillating independently, the motion is, as we saw, not chaotic. Suppose now that we put a coupling, or interaction, between the different modes. This means that the evolution of each mode, or oscillator, at a certain moment is determined not just by the state of this oscillator at that moment, but by the states of the other oscillators as well. When do we have chaos then? Well, for sensitive dependence on initial condition to occur, at least three oscillators are necessary. In addition, the more oscillators there are, and the more coupling there is between them, the more likely you are to see chaos." (David Ruelle, "Chance and Chaos", 1991)

"[…] the standard theory of chaos deals with time evolutions that come back again and again close to where they were earlier. Systems that exhibit this "eternal return" are in general only moderately complex. The historical evolution of very complex systems, by contrast, is typically one way: history does not repeat itself. For these very complex systems with one-way evolution it is usually clear that sensitive dependence on initial condition is present. The question is then whether it is restricted by regulation mechanisms, or whether it leads to long-term important consequences." (David Ruelle, "Chance and Chaos", 1991)

"What we now call chaos is a time evolution with sensitive dependence on initial condition. The motion on a strange attractor is thus chaotic. One also speaks of deterministic noise when the irregular oscillations that are observed appear noisy, but the mechanism that produces them is deterministic." (David Ruelle, "Chance and Chaos", 1991)

"Chaos is a parody of any metaphysics of destiny. It is not even an avatar of such a metaphysics. The poetry of initial conditions fascinates us today, now that we no longer possess a vision of final conditions, and Chaos stands in for us as a negative destiny. [...] Destiny is the ecstatic figure of necessity. Chaos is merely the metastatic figure of Chance. Chaotic processes are random and statistical in nature and, even if they culminate in the hidden order of strange attractors, that still has nothing to do with the fulgurating notion of destiny, the absence of which is cruelly felt." (Jean Baudrillard, "The Illusion of the End", 1992)

"In nonlinear systems - and the economy is most certainly nonlinear - chaos theory tells you that the slightest uncertainty in your knowledge of the initial conditions will often grow inexorably. After a while, your predictions are nonsense." (M Mitchell Waldrop, "Complexity: The Emerging Science at the Edge of Order and Chaos", 1992)

"How can deterministic behavior look random? If truly identical states do occur on two or more occasions, it is unlikely that the identical states that will necessarily follow will be perceived as being appreciably different. What can readily happen instead is that almost, but not quite, identical states occurring on two occasions will appear to be just alike, while the states that follow, which need not be even nearly alike, will be observably different. In fact, in some dynamical systems it is normal for two almost identical states to be followed, after a sufficient time lapse, by two states bearing no more resemblance than two states chosen at random from a long sequence. Systems in which this is the case are said to be sensitively dependent on initial conditions. With a few more qualifications, to be considered presently, sensitive dependence can serve as an acceptable definition of chaos [...]" (Edward N Lorenz, "The Essence of Chaos", 1993)

"How surprising it is that the laws of nature and the initial conditions of the universe should allow for the existence of beings who could observe it. Life as we know it would be impossible if any one of several physical quantities had slightly different values." (Steven Weinberg, "Life in the Quantum Universe", Scientific American, 1995)

"Chaos appears in both dissipative and conservative systems, but there is a difference in its structure in the two types of systems. Conservative systems have no attractors. Initial conditions can give rise to periodic, quasiperiodic, or chaotic motion, but the chaotic motion, unlike that associated with dissipative systems, is not self-similar. In other words, if you magnify it, it does not give smaller copies of itself. A system that does exhibit self-similarity is called fractal. [...] The chaotic orbits in conservative systems are not fractal; they visit all regions of certain small sections of the phase space, and completely avoid other regions. If you magnify a region of the space, it is not self-similar." (Barry R Parker, "Chaos in the Cosmos: The stunning complexity of the universe", 1996)

"What is chaos? Everyone has an impression of what the word means, but scientifically chaos is more than random behavior, lack of control, or complete disorder. [...] Scientifically, chaos is defined as extreme sensitivity to initial conditions. If a system is chaotic, when you change the initial state of the system by a tiny amount you change its future significantly." (Barry R Parker, "Chaos in the Cosmos: The stunning complexity of the universe", 1996)

"Small changes in the initial conditions in a chaotic system produce dramatically different evolutionary histories. It is because of this sensitivity to initial conditions that chaotic systems are inherently unpredictable. To predict a future state of a system, one has to be able to rely on numerical calculations and initial measurements of the state variables. Yet slight errors in measurement combined with extremely small computational errors (from roundoff or truncation) make prediction impossible from a practical perspective. Moreover, small initial errors in prediction grow exponentially in chaotic systems as the trajectories evolve. Thus, theoretically, prediction may be possible with some chaotic processes if one is interested only in the movement between two relatively close points on a trajectory. When longer time intervals are involved, the situation becomes hopeless."(Courtney Brown, "Chaos and Catastrophe Theories", 1995)

"Swarm systems generate novelty for three reasons: (1) They are 'sensitive to initial conditions' - a scientific shorthand for saying that the size of the effect is not proportional to the size of the cause - so they can make a surprising mountain out of a molehill. (2) They hide countless novel possibilities in the exponential combinations of many interlinked individuals. (3) They don’t reckon individuals, so therefore individual variation and imperfection can be allowed. In swarm systems with heritability, individual variation and imperfection will lead to perpetual novelty, or what we call evolution." (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)

"Chaos appears in both dissipative and conservative systems, but there is a difference in its structure in the two types of systems. Conservative systems have no attractors. Initial conditions can give rise to periodic, quasiperiodic, or chaotic motion, but the chaotic motion, unlike that associated with dissipative systems, is not self-similar. In other words, if you magnify it, it does not give smaller copies of itself. A system that does exhibit self-similarity is called fractal. [...] The chaotic orbits in conservative systems are not fractal; they visit all regions of certain small sections of the phase space, and completely avoid other regions. If you magnify a region of the space, it is not self-similar." (Barry R Parker, "Chaos in the Cosmos: The stunning complexity of the universe", 1996)

"What is chaos? Everyone has an impression of what the word means, but scientifically chaos is more than random behavior, lack of control, or complete disorder. [...] Scientifically, chaos is defined as extreme sensitivity to initial conditions. If a system is chaotic, when you change the initial state of the system by a tiny amount you change its future significantly." (Barry R Parker, "Chaos in the Cosmos: The stunning complexity of the universe", 1996)

16 January 2025

On Chaos: Definitions

"Chaos is but unperceived order; it is a word indicating the limitations of the human mind and the paucity of observational facts. The words ‘chaos’, ‘accidental’, ‘chance’, ‘unpredictable’ are conveniences behind which we hide our ignorance." (Harlow Shapley, "Of Stars and Men", 1958) 

"The term chaos is used in a specific sense where it is an inherently random pattern of behaviour generated by fixed inputs into deterministic (that is fixed) rules (relationships). The rules take the form of non-linear feedback loops. Although the specific path followed by the behaviour so generated is random and hence unpredictable in the long-term, it always has an underlying pattern to it, a 'hidden' pattern, a global pattern or rhythm. That pattern is self-similarity, that is a constant degree of variation, consistent variability, regular irregularity, or more precisely, a constant fractal dimension. Chaos is therefore order (a pattern) within disorder (random behaviour)." (Ralph D Stacey, "The Chaos Frontier: Creative Strategic Control for Business", 1991)

"The term chaos is also used in a general sense to describe the body of chaos theory, the complete sequence of behaviours generated by feed-back rules, the properties of those rules and that behaviour." (Ralph D Stacey, "The Chaos Frontier: Creative Strategic Control for Business", 1991)

"What is chaos? Everyone has an impression of what the word means, but scientifically chaos is more than random behavior, lack of control, or complete disorder. [...] Scientifically, chaos is defined as extreme sensitivity to initial conditions. If a system is chaotic, when you change the initial state of the system by a tiny amount you change its future significantly." (Barry R Parker, "Chaos in the Cosmos: The stunning complexity of the universe", 1996)

"Chaos is a phenomenon encountered in science and mathematics wherein a deterministic (rule-based) system behaves unpredictably. That is, a system which is governed by fixed, precise rules, nevertheless behaves in a way which is, for all practical purposes, unpredictable in the long run. The mathematical use of the word 'chaos' does not align well with its more common usage to indicate lawlessness or the complete absence of order. On the contrary, mathematically chaotic systems are, in a sense, perfectly ordered, despite their apparent randomness. This seems like nonsense, but it is not." (David P Feldman, "Chaos and Fractals: An Elementary Introduction", 2012)

"Chaos provides order. Chaotic agitation and motion are needed to create overall, repetitive order. This ‘order through fluctuations’ keeps dynamic markets stable and evolutionary processes robust. In essence, chaos is a phase transition that gives spontaneous energy the means to achieve repetitive and structural order." (Lawrence K Samuels, "Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013)

07 January 2025

On Chaos VIII

"The unifying concept underlying fractals, chaos, and power laws is self-similarity. Self-similarity, or invariance against changes in scale or size, is an attribute of many laws of nature and innumerable phenomena in the world around us. Self-similarity is, in fact, one of the decisive symmetries that shape our universe and our efforts to comprehend it." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"[…] the world is not complete chaos. Strange attractors often do have structure: like the Sierpinski gasket, they are self-similar or approximately so. And they have fractal dimensions that hold important clues for our attempts to understand chaotic systems such as the weather." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"Mathematics is sometimes described as the science which generates eternal notions and concepts for the scientific method: derivatives‚ continuity‚ powers‚ logarithms are examples. The notions of chaos‚ fractals and strange attractors are not yet mathematical notions in that sense‚ because their final definitions are not yet agreed upon." (Heinz-Otto Peitgen et al, "Chaos and Fractals: New Frontiers of Science", 2004)

"Chaos can leave statistical footprints that look like noise. This can arise from simple systems that are deterministic and not random. [...] The surprising mathematical fact is that most systems are chaotic. Change the starting value ever so slightly and soon the system wanders off on a new chaotic path no matter how close the starting point of the new path was to the starting point of the old path. Mathematicians call this sensitivity to initial conditions but many scientists just call it the butterfly effect. And what holds in math seems to hold in the real world - more and more systems appear to be chaotic." (Bart Kosko, "Noise", 2006)

"'Chaos' refers to systems that are very sensitive to small changes in their inputs. A minuscule change in a chaotic communication system can flip a 0 to a 1 or vice versa. This is the so-called butterfly effect: Small changes in the input of a chaotic system can produce large changes in the output. Suppose a butterfly flaps its wings in a slightly different way. can change its flight path. The change in flight path can in time change how a swarm of butterflies migrates." (Bart Kosko, "Noise", 2006)

"Entropy is the crisp scientific name for waste, chaos, and disorder. As far as we know, the sole law of physics with no known exceptions anywhere in the universe is this: All creation is headed to the basement. Everything in the universe is steadily sliding down the slope toward the supreme equality of wasted heat and maximum entropy." (Kevin Kelly, "What Technology Wants", 2010)

"Chaos is a long-term behavior of a nonlinear dynamical system that never falls in any static or periodic trajectories. [It] looks like a random fluctuation, but still occurs in completely deterministic, simple dynamical systems. [It] exhibits sensitivity to initial conditions. [It] occurs when the period of the trajectory of the system’s state diverges to infinity. [It] occurs when no periodic trajectories are stable." (Hiroki Sayama, "Introduction to the Modeling and Analysis of Complex Systems", 2015)

"The sensitivity of chaotic systems to initial conditions is particularly well known under the moniker of the 'butterfly effect', which is a metaphorical illustration of the chaotic nature of the weather system in which 'a flap of a butterfly’s wings in Brazil could set off a tornado in Texas'. The meaning of this expression is that, in a chaotic system, a small perturbation could eventually cause very large-scale difference in the long run." (Hiroki Sayama, "Introduction to the Modeling and Analysis of Complex Systems", 2015)

"Chaos does provide a framework or a mindsetor point of view, but it is not as directly explanatory as germ theory or plate tectonics. Chaos is a behavior - a phenomenon - not a causal mechanism. [...] The situation with fractals is similar. The study of fractals draws one’s eye toward patterns and structures that repeat across different length or time scales. There is also a set of analytical tools - mainly calculating various fractal dimensions - that can be used to quantify structural properties of fractals. Fractal dimensions and related quantities have become standard tools used across the sciences. As with chaos, there is not a fractal theory. However, the study of fractals has helped to explain why certain types of shapes and patterns occur so frequently." (David P Feldman,"Chaos and Fractals: An Elementary Introduction", 2012)

"Chaos is a phenomenon encountered in science and mathematics wherein a deterministic (rule-based) system behaves unpredictably. That is, a system which is governed by fixed, precise rules, nevertheless behaves in a way which is, for all practical purposes, unpredictable in the long run. The mathematical use of the word 'chaos' does not align well with its more common usage to indicate lawlessness or the complete absence of order. On the contrary, mathematically chaotic systems are, in a sense, perfectly ordered, despite their apparent randomness. This seems like nonsense, but it is not." (David P Feldman,"Chaos and Fractals: An Elementary Introduction", 2012)

27 December 2023

Manfred Schroeder - Collected Quotes

"A Markov process is a stochastic process in which present events depend on the past only through some finite number of generations. In a first-order Markov process, the influential past is limited to a single earlier generation: the present can be fully accounted for by the immediate past." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"[…] a pink (or white, or brown) noise is the very paradigm of a statistically self-similar process. Phenomena whose power spectra are homogeneous power functions lack inherent time and frequency scales; they are scale-free. There is no characteristic time or frequency -whatever happens in one time or frequency range happens on all time or frequency scales. If such noises are recorded on magnetic tape and played back at various speeds, they sound the same […]" (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"All physical objects that are 'self-similar' have limited self-similarity - just as there are no perfectly periodic functions, in the mathematical sense, in the real world: most oscillations have a beginning and an end (with the possible exception of our universe, if it is closed and begins a new life cycle after every 'big crunch' […]. Nevertheless, self-similarity is a useful  abstraction, just as periodicity is one of the most useful concepts in the sciences, any finite extent notwithstanding." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"[…] an epidemic does not always percolate through an entire population. There is a percolation threshold below which the epidemic has died out before most of the people have." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"Apart from power laws, iteration is one of the prime sources of self-similarity. Iteration here means the repeated application of some rule or operation - doing the same thing over and over again. […] A concept closely related to iteration is recursion. In an age of increasing automation and computation, many processes and calculations are recursive, and if a recursive algorithm is in fact repetitious, self-similarity is waiting in the wings."(Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"Formally, a Cantor set is defined as a set that is totally disconnected, closed, and perfect. A totally disconnected set is a set that contains no intervals and therefore has no interior points. A closed set is one that contains all its boundary elements. (A boundary element is an element that contains elements both inside and outside the set in arbitrarily small neighborhoods.) A perfect set is a nonempty set that is equal to the set of its accumulation points. All three conditions are met by our middle-third—erasing construction, the original Cantor set." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"[…] homogeneous functions have an interesting scaling property: they reproduce themselves upon rescaling. This scaling invariance can shed light into some of the darker corners of physics, biology, and other sciences, and even illuminate our appreciation of music." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"In a white-noise process, every value of the process (e.g., the successive frequencies of a melody) is completely independent of its past - it is a total surprise. By contrast, in 'brown music' (a term derived from Brownian motion), only the increments are independent of the past, giving rise to a rather boring tune." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"In contrast to gravitation, interatomic forces are typically modeled as inhomogeneous power laws with at least two different exponents. Such laws (and exponential laws, too) are not scale-free; they necessarily introduce a characteristic length, related to the size of the atoms. Power laws also govern the power spectra of all kinds of noises, most intriguing among them the ubiquitous (but sometimes difficult to explain)." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"In physics, there are numerous phenomena that are said to be 'true on all scales', such as the Heisenberg uncertainty relation, to which no exception has been found over vast ranges of the variables involved (such as energy versus time, or momentum versus position). But even when the size ranges are limited, as in galaxy clusters (by the size of the universe) or the magnetic domains in a piece of iron near the transition point to ferromagnetism (by the size of the magnet), the concept true on all scales is an important postulate in analyzing otherwise often obscure observations." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"Nature abounds with periodic phenomena: from the motion of a swing to the oscillations of atoms, from the chirping of a grasshopper to the orbits of the heavenly bodies. […] Of course, nothing in nature is exactly periodic. All motion has a beginning and an end, so that, in the mathematical sense, strict periodicity does not exist in the real world. Nevertheless, periodicity has proved to be a supremely useful concept in elucidating underlying laws and mechanisms in many fields." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"Percolation is a widespread paradigm. Percolation theory can therefore illuminate a great many seemingly diverse situations. Because of its basically geometric character, it facilitates the analysis of intricate patterns and textures without needless physical complications. And the self-similarity that prevails at critical points permits profitably mining the connection with scaling and fractals." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"[…] physicists have come to appreciate a fourth kind of temporal behavior: deterministic chaos, which is aperiodic, just like random noise, but distinct from the latter because it is the result of deterministic equations. In dynamic systems such chaos is often characterized by small fractal dimensions because a chaotic process in phase space typically fills only a small part of the entire, energetically available space." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"[…] power laws, with integer or fractional exponents, are one of the most fertile fields and abundant sources of self-similarity." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"Scaling invariance results from the fact that homogeneous power laws lack natural scales; they do not harbor a characteristic unit (such as a unit length, a unit time, or a unit mass). Such laws are therefore also said to be scale-free or, somewhat paradoxically, 'true on all scales'. Of course, this is strictly true only for our mathematical models. A real spring will not expand linearly on all scales; it will eventually break, at some characteristic dilation length. And even Newton's law of gravitation, once properly quantized, will no doubt sprout a characteristic length." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"The only prerequisite for a self-similar law to prevail in a given size range is the absence of an inherent size scale." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"The unifying concept underlying fractals, chaos, and power laws is self-similarity. Self-similarity, or invariance against changes in scale or size, is an attribute of many laws of nature and innumerable phenomena in the world around us. Self-similarity is, in fact, one of the decisive symmetries that shape our universe and our efforts to comprehend it." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"[…] the world is not complete chaos. Strange attractors often do have structure: like the Sierpinski gasket, they are self-similar or approximately so. And they have fractal dimensions that hold important clues for our attempts to understand chaotic systems such as the weather." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"Understandably, invariant sets (and their complements) play a crucial role in dynamic systems in general because they tell the most important fact about any initial condition, namely, its eventual fate: will the iterates be bounded, or will they be unstable and diverge? Or will the orbit be periodic or aperiodic?" (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

11 December 2023

David P Feldman - Collected Quotes

"A function is also sometimes referred to as a map or a mapping. This terminology is common in mathematics, but less so in physics or other scientific fields. The idea of a mapping is useful if one wants to think of a function as acting on an entire set of input values." (David P Feldman,"Chaos and Fractals: An Elementary Introduction", 2012)

"Chaos does provide a framework or a mindsetor point of view, but it is not as directly explanatory as germ theory or plate tectonics. Chaos is a behavior - a phenomenon - not a causal mechanism. [...] The situation with fractals is similar. The study of fractals draws one’s eye toward patterns and structures that repeat across different length or time scales. There is also a set of analytical tools - mainly calculating various fractal dimensions - that can be used to quantify structural properties of fractals. Fractal dimensions and related quantities have become standard tools used across the sciences. As with chaos, there is not a fractal theory. However, the study of fractals has helped to explain why certain types of shapes and patterns occur so frequently." (David P Feldman,"Chaos and Fractals: An Elementary Introduction", 2012)

"Chaos is a phenomenon encountered in science and mathematics wherein a deterministic (rule-based) system behaves unpredictably. That is, a system which is governed by fixed, precise rules, nevertheless behaves in a way which is, for all practical purposes, unpredictable in the long run. The mathematical use of the word 'chaos' does not align well with its more common usage to indicate lawlessness or the complete absence of order. On the contrary, mathematically chaotic systems are, in a sense, perfectly ordered, despite their apparent randomness. This seems like nonsense, but it is not." (David P Feldman,"Chaos and Fractals: An Elementary Introduction", 2012)

"Chaos is just one phenomenon out of many that are encountered in the study of dynamical systems. In addition to behaving chaotically, systems may show fixed equilibria, simple periodic cycles, and more complicated behaviors that defy easy categorization. The study of dynamical systems holds many surprises and shows that the relationships between order and disorder, simplicity and complexity, can be subtle, and counterintuitive." (David P Feldman,"Chaos and Fractals: An Elementary Introduction", 2012)

"Fractals are different from chaos. Fractals are self-similar geometric objects, while chaos is a type of deterministic yet unpredictable dynamical behavior. Nevertheless, the two ideas or areas of study have several interesting and important links. Fractal objects at first blush seem intricate and complex. However, they are often the product of very simple dynamical systems. So the two areas of study - chaos and fractals - are naturally paired, even though they are distinct concepts." (David P Feldman,"Chaos and Fractals: An Elementary Introduction", 2012)

"Functions are the most basic way of mathematically representing a relationship. [...] In mathematics, it is useful to think of a function as an action; a function takes a number as input, does something to it, and outputs a new number. [...] We are now in a position to refine our definition of a function. A function is a rule that assigns an output value f(x) to every input x. This is consistent with the everyday use of the word function: the output f(x) is a function of the input x. The output depends on the input [...]" (David P Feldman,"Chaos and Fractals: An Elementary Introduction", 2012)

"It is difficult to precisely define what is meant by a scientific theory, but usually a theory is a concise and consistent body of knowledge that allows one to understand a broad class of natural phenomena. [...] A scientific theory can provide a broad explanatory framework without being associated with the equations and calculational methods that are typical of physics." (David P Feldman,"Chaos and Fractals: An Elementary Introduction", 2012)

"The study of chaos shows that simple systems can exhibit complex and unpredictable behavior. This realization both suggests limits on our ability to predict certain phenomena and that complex behavior may have a simple explanation. Fractals give scientists a simple and concise way to qualitatively and quantitatively understand self-similar objects or phenomena. More generally, the study of chaos and fractals hold many fun surprises; it challenges one’s intuition about simplicity and complexity, order and disorder." (David P Feldman,"Chaos and Fractals: An Elementary Introduction", 2012)

"The study of fractals gives us a quantitative language to describe the myriad of self-similar shapes found in the natural world, including: mountain ranges; river basins; clouds and lightning; trees, ferns, and other plants; and vascular systems in plants and animals. Fractals need not be natural objects; they can be human-made and can also unfold in time in addition to space." (David P Feldman,"Chaos and Fractals: An Elementary Introduction", 2012)

"The term 'chaos'  has somewhat of a dual life. It refers to a particular type of dynamical behavior, but it is also often used as a general shorthand for the study of dynamical systems." (David P Feldman,"Chaos and Fractals: An Elementary Introduction", 2012)

"Thus, much of physics can be seen as a iterative process: an object or a bunch of objects have some initial condition or seed. [...] Iterated functions are an example of what mathematicians call dynamical systems. A dynamical system is just a generic name for some variable or set of variables that change over time. There are many different types of dynamical systems - the iterated functions introduced above are just one type among many. Dynamical systems is now generally recognized as a branch of applied mathematics that studies properties of how systems change over time." (David P Feldman,"Chaos and Fractals: An Elementary Introduction", 2012)

"Understanding chaos requires much less advanced mathematics than other current areas of physics research such as general relativity or particle physics. Observing chaos and fractals requires no specialized equipment; chaos is seen in scores of everyday phenomena - a boiling pot of water, a dripping faucet, shifting weather patterns. And fractals are almost ubiquitous in the natural world. Thus, it is possible to teach the central ideas and insights of chaos in a rigorous, genuine, and relevant way to students with relatively little mathematics background." (David P Feldman,"Chaos and Fractals: An Elementary Introduction", 2012)

"A dynamical system is any mathematical system that changes in time according to a well specified rule." (David P Feldman, "Chaos and Dynamical Systems", 2019)

"Typically, in a mathematical model or the real world, one only expects to observe stable fixed points. An unstable fixed point is susceptible to a small perturbation; a tiny external influence will move the system away from the unstable fixed point." (David P Feldman, "Chaos and Dynamical Systems", 2019)

02 July 2023

On Chaos VII

"The central task of a natural science is to make the wonderful commonplace: to show that complexity, correctly viewed, is only a mask for simplicity; to find pattern hidden in apparent chaos. […] This is the task of natural science: to show that the wonderful is not incomprehensible, to show how it can be comprehended - but not to destroy wonder. For when we have explained the wonderful, unmasked the hidden pattern, a new wonder arises at how complexity was woven out of simplicity. The aesthetics of natural science and mathematics is at one with the aesthetics of music and painting - both inhere in the discovery of a partially concealed pattern." (Herbert A Simon, "The Sciences of the Artificial", 1968)

"I would [...] urge that people be introduced to [chaos] early in their mathematical education. [Chaos] can be studied phenomenologically by iterating it on a calculator, or even by hand. Its study does not involve as much conceptual sophistication as does elementary calculus. Such study would greatly enrich the student's intuition. Not only in research, but also in the everyday world of politics and economics, we would all be better off if more people realised that simple nonlinear systems do not necessarily possess simple dynamical properties." (Robert May, "Simple mathematical models with very complicated dynamics", Nature 26(5560), 1976)

"Due to this sensitivity any uncertainty about seemingly insignificant digits in the sequence of numbers which defines an initial condition, spreads with time towards the significant digits, leading to chaotic behavior. Therefore there is a change in the information we have about the state of the system. This change can be thought of as a creation of information if we consider that two initial conditions that are different but indistinguishable (within a certain precision), evolve into distinguishable states after a finite time." (David Ruelle, "Chaotic Evolution and Strange Attractors: The statistical analysis of time series for deterministic nonlinear systems", 1989)

"[…] chaos and fractals are part of an even grander subject known as dynamics. This is the subject that deals with change, with systems that evolve in time. Whether the system in question settles down to equilibrium, keeps repeating in cycles, or does something more complicated, it is dynamics that we use to analyze the behavior." (Steven H Strogatz, "Non-Linear Dynamics and Chaos, 1994)

"Chaos appears in both dissipative and conservative systems, but there is a difference in its structure in the two types of systems. Conservative systems have no attractors. Initial conditions can give rise to periodic, quasiperiodic, or chaotic motion, but the chaotic motion, unlike that associated with dissipative systems, is not self-similar. In other words, if you magnify it, it does not give smaller copies of itself. A system that does exhibit self-similarity is called fractal. [...] The chaotic orbits in conservative systems are not fractal; they visit all regions of certain small sections of the phase space, and completely avoid other regions. If you magnify a region of the space, it is not self-similar." (Barry R Parker, "Chaos in the Cosmos: The stunning complexity of the universe", 1996)

"Although the shape of chaos is nightmarish, its voice is oddly soothing. When played through a loudspeaker, chaos sounds like white noise, like the soft static that helps insomniacs fall asleep." (Steven Strogatz, "Sync: The Emerging Science of Spontaneous Order", 2003)

"Chaos has three primary features: unpredictability, boundedness, and sensitivity to initial conditions. Unpredictability means that a sequence of numbers that is generated from a chaotic function does not repeat. This principle is perhaps a matter of degree, because some of the numbers could look as though they are recurring only because they are rounded to a convenient number of decimal points. [...] Boundedness means that, for all the unpredictability of motion, all points remain within certain boundaries. The principle of sensitivity to initial conditions means that two points that start off as arbitrarily close together become exponentially farther away from each other as the iteration process proceeds. This is a clear case of small differences producing a huge effect." (Stephen J Guastello & Larry S Liebovitch, "Introduction to Nonlinear Dynamics and Complexity" [in "Chaos and Complexity in Psychology"], 2009)

"Chaos is a phenomenon encountered in science and mathematics wherein a deterministic (rule-based) system behaves unpredictably. That is, a system which is governed by fixed, precise rules, nevertheless behaves in a way which is, for all practical purposes, unpredictable in the long run. The mathematical use of the word 'chaos' does not align well with its more common usage to indicate lawlessness or the complete absence of order. On the contrary, mathematically chaotic systems are, in a sense, perfectly ordered, despite their apparent randomness. This seems like nonsense, but it is not." (David P Feldman, "Chaos and Fractals: An Elementary Introduction", 2012)

"Chaos is just one phenomenon out of many that are encountered in the study of dynamical systems. In addition to behaving chaotically, systems may show fixed equilibria, simple periodic cycles, and more complicated behaviors that defy easy categorization. The study of dynamical systems holds many surprises and shows that the relationships between order and disorder, simplicity and complexity, can be subtle, and counterintuitive." (David P Feldman, "Chaos and Fractals: An Elementary Introduction", 2012)

 "Understanding chaos requires much less advanced mathematics than other current areas of physics research such as general relativity or particle physics. Observing chaos and fractals requires no specialized equipment; chaos is seen in scores of everyday phenomena - a boiling pot of water, a dripping faucet, shifting weather patterns. And fractals are almost ubiquitous in the natural world. Thus, it is possible to teach the central ideas and insights of chaos in a rigorous, genuine, and relevant way to students with relatively little mathematics background." (David P Feldman, "Chaos and Fractals: An Elementary Introduction", 2012)

10 March 2023

On Chaos: Does God Play Dice?

"God's dice always have a lucky roll." (Sophocles, 5th century BC)

"A perfect equity adjusts its balance in all parts of life. The dice of God are always loaded. The world looks like a multiplication-table, or a mathematical equation, which, turn it how you will, balances itself." (Ralph W Emerson, "Compensation", 1841)

"It seems hard to sneak a look at God's cards. But that He plays dice and uses 'telepathic' methods [...] is something that I cannot believe for a single moment." (Albert Einstein, [Letter to Cornel Lanczos] 1942)

"You believe in the God who plays dice, and I in complete law and order in a world that objectively exists, and which I, in a wildly speculative way, am trying to capture. [...] Even the great initial success of the quantum theory does not make me believe in the fundamental dice-game, although I am well aware that our younger colleagues interpret this as a consequence of senility. No doubt the day will come when we will see whose instinctive attitude was the correct one." (Albert Einstein, [Letter to Max Born] 1944)

"If God has made the world a perfect mechanism, He has at least conceded so much to our imperfect intellect that in order to predict little parts of it, we need not solve innumerable differential equations, but can use dice with fair success." (Max Born, "Albert Einstein: Philosopher-Scientist", 1949)

"Consideration of particle emission from black holes would seem to suggest that God not only plays dice, but also sometimes throws them where they cannot be seen." (Stephen Hawking, "The Quantum Mechanics of Black Holes", Scientific American, 1977)

"Not only does God play dice with the world - He does not let us see what He has rolled." (Stanisław Lem, "Imaginary Magnitude", 1981)

"Specialists [...] are slowly coming to the realization that the universe is biased and leans to the left. [...] Many scientists have come to believe that this odd state of affairs has somethittg to do with the weak nuclear force. It seems that the weak force tends to impart a left-handed spin to electrons, and this effect may bias some kinds of molecular synthesis to the left. [...] But scientific speculation of this ilk leads to a deeper question. Was it purely a matter of chance that left-handedness became the preferred direction in our universe, or is there some reason behind it? Did the sinister bent of existence that scientists have observed stem from a roll of the dice, or is God a semiambidextrous southpaw?" (Malcolm W Browne, 1986)

"So Einstein was wrong when he said, 'God does not play dice'. Consideration of black holes suggests, not only that God does play dice, but that he sometimes confuses us by throwing them where they can't be seen." (Stephen Hawking, 1994)

"Yet, Einstein's theories are also not the last word: quantum theory and relativity are inconsistent, and Einstein himself, proclaiming that 'God does not play dice!', rejected the basic reliance of quantum theory on chance events, and looked forward to a theory which would be deterministic. Recent experiments suggest that this view of Einstein's conflicts with his other deeply held beliefs about the nature of the physical universe. Certain it is that somewhere, beyond physicists' current horizons, are even more powerful theories of how the world is." (David Wells, "You Are a Mathematician: A wise and witty introduction to the joy of numbers", 1995)

"Chaos teaches us that anybody, God or cat, can play dice deterministically, while the naïve onlooker imagines that something random is going on." (Ian Stewart, "Does God Play Dice: The New Mathematics of Chaos", 1997)

"Indeed a deterministic die behaves very much as if it has six attractors, the steady states corresponding to its six faces, all of whose basins are intertwined. For technical reasons that can't quite be true, but it is true that deterministic systems with intertwined basins are wonderful substitutes for dice; in fact they're super-dice, behaving even more ‘randomly’ - apparently - than ordinary dice. Super-dice are so chaotic that they are uncomputable. Even if you know the equations for the system perfectly, then given an initial state, you cannot calculate which attractor it will end up on. The tiniest error of approximation - and there will always be such an error - will change the answer completely." (Ian Stewart, "Does God Play Dice: The New Mathematics of Chaos", 1997)

"Perhaps God can play dice, and create a universe of complete law and order, in the same breath." (Ian Stewart, "Does God Play Dice: The New Mathematics of Chaos", 1997)

"Simple laws may not produce simple behaviour. Deterministic laws can produce behaviour that appears random. Order can breed its own kind of chaos. The question is not so much whether God plays dice, but how God plays dice.", 1997)

"The chance events due to deterministic chaos, on the other hand, occur even within a closed system determined by immutable laws. Our most cherished examples of chance - dice, roulette, coin-tossing - seem closer to chaos than to the whims of outside events. So, in this revised sense, dice are a good metaphor for chance after all. It's just that we've refined our concept of randomness. Indeed, the deterministic but possibly chaotic stripes of phase space may be the true source of probability." (Ian Stewart, "Does God Play Dice: The New Mathematics of Chaos", 1997)

"[…] we would like to observe that the butterfly effect lies at the root of many events which we call random. The final result of throwing a dice depends on the position of the hand throwing it, on the air resistance, on the base that the die falls on, and on many other factors. The result appears random because we are not able to take into account all of these factors with sufficient accuracy. Even the tiniest bump on the table and the most imperceptible move of the wrist affect the position in which the die finally lands. It would be reasonable to assume that chaos lies at the root of all random phenomena." (Iwo Bialynicki-Birula & Iwona Bialynicka-Birula, "Modeling Reality: How Computers Mirror Life", 2004)

"Freedom, then, is the ability to choose at will from the greatest number of options available to us. In other words, entropy is freedom; and the equal opportunity (rather than equality per se) that maximizes the number of options available is the second law of thermodynamics. When the number of options available to us is infinite, choice becomes random and the microstate in which we exist is our fate that is determined by God’s game of dice." (Oded Kafri & Hava Kafri, "Entropy: God's Dice Game", 2013)

"There is no such thing as randomness. No one who could detect every force operating on a pair of dice would ever play dice games, because there would never be any doubt about the outcome. The randomness, such as it is, applies to our ignorance of the possible outcomes. It doesn’t apply to the outcomes themselves. They are 100% determined and are not random in the slightest. Scientists have become so confused by this that they now imagine that things really do happen randomly, i.e. for no reason at all." (Thomas Stark, "God Is Mathematics: The Proofs of the Eternal Existence of Mathematics", 2018)

"God may not play dice with the universe, but something strange is going on with the prime numbers." (Paul Erdos)

"God plays dice with the universe, but they’re loaded dice. And the main objective of physics now is to find out by what rules were they loaded and how can we use them for our own ends." (Joseph Ford)

"I shall never believe that God plays dice with the world." (Albert Einstein)

22 January 2023

Geometric Figures XIII: On Saddles

"In order to know the curvature of a curve, the determination of the radius of the osculating circle furnishes us the best measure, where for each point of the curve we find a circle whose curvature is precisely the same. However, when one looks for the curvature of a surface, the question is very equivocal and not at all susceptible to an absolute response, as in the case above. There are only spherical surfaces where one would be able to measure the curvature, assuming the curvature of the sphere is the curvature of its great circles, and whose radius could be considered the appropriate measure. But for other surfaces one doesn’t know even how to compare a surface with a sphere, as when one can always compare the curvature of a curve with that of a circle. The reason is evident, since at each point of a surface there are an infinite number of different curvatures. One has to only consider a cylinder, where along the directions parallel to the axis, there is no curvature, whereas in the directions perpendicular to the axis, which are circles, the curvatures are all the same, and all other oblique sections to the axis give a particular curvature. It’s the same for all other surfaces, where it can happen that in one direction the curvature is convex, and in another it is concave, as in those resembling a saddle." (Leonhard Euler, "Recherches sur la courbure des surfaces", 1767)

"While the minimum and maximum problems of calculus of variations correspond to the problem in the ordinary calculus of finding peaks and pits of a surface, the minimax problems correspond to the problem of finding the saddle points of the surface (the passes of a mountain)."(Karl Menger, "What Is Calculus of Variations and What Are Its Applications?" [James R Newman, "The World of Mathematics" Vol. II], 1956)

"A proven theorem of game theory states that every game with complete information possesses a saddle point and therefore a solution." (Richard A Epstein, "The Theory of Gambling and Statistical Logic" [Revised Edition], 1977)

"So the strategy of mixing the choices with equal likelihood is an equilibrium point for the game, in the same sense that the minimax point is an equilibrium for a game having a saddle point. Thus, using a strategy that randomizes their choices, Max and Min can each announce his or her strategy to the other without the opponent being able to exploit this information to get a larger average payoff for himself or herself." (John L Casti, "Five Golden Rules", 1995)

"What's important about a saddle point is that it represents a decision by the two players that neither can improve upon by unilaterally departing from it. In short, either player can announce such a choice in advance to the other player and suffer no penalty by doing so. Consequently, the best choice for each player is at the saddle point, which is called a 'solution' to the game in pure strategies. This is because regardless of the number of times the game is played, the optimal choice for each player is to always take his or her saddle-point decision. […] the saddle point is at the same time the highest point on the payoff surface in one direction and the lowest in the other direction. Put in algebraic terms using the payoff matrix, the saddle point is where the largest of the row minima coincides with the smallest of the column maxima." (John L Casti, "Five Golden Rules", 1995)

"If sinks, sources, saddles, and limit cycles are coins landing heads or tails, then the exceptions are a coin landing on edge. Yes, it might happen, in theory; but no, it doesn't, in practice." (Ian Stewart, "Does God Play Dice: The New Mathematics of Chaos", 2002)

"An attractor is regarded as a stable structure because all the points within it follow the same rules of motion. There are four principal types of attractors: the fixed point, the limit cycle, toroidal attractors, and chaotic attractors. Each type reflects a distinctly different type of movement that occurs within it. Repellors and saddles are closely related structures that are not structurally stable." (Stephen J Guastello & Larry S Liebovitch, "Introduction to Nonlinear Dynamics and Complexity" [in "Chaos and Complexity in Psychology"], 2009)

"In parametrized dynamical systems a bifurcation occurs when a qualitative change is invoked by a change of parameters. In models such a qualitative change corresponds to transition between dynamical regimes. In the generic theory a finite list of cases is obtained, containing elements like ‘saddle-node’, ‘period doubling’, ‘Hopf bifurcation’ and many others." (Henk W Broer & Heinz Hanssmann, "Hamiltonian Perturbation Theory (and Transition to Chaos)", 2009)

"Saddle points have properties of both attractors and repellors. On one hand, they attract traveling points. On the other, the points do not stay on the saddle point very long before they are deflected in another direction. The saddle phenomenon is similar to the flow of people to and from an information booth in an airport or other major facility. The information booth attracts people, but the booth is not their destination. The visitors remain there only long enough to find out what they need to know to get to where they are going. Again, because the points are following different rules of flow, the system is not stable." (Stephen J Guastello & Larry S Liebovitch, "Introduction to Nonlinear Dynamics and Complexity" [in "Chaos and Complexity in Psychology"], 2009)

"[…] what exactly do we mean by a bifurcation? The usual definition involves the concept of 'topological equivalence': if the phase portrait changes its topological structure as a parameter is varied, we say that a bifurcation has occurred. Examples include changes in the number or stability of fixed points, closed orbits, or saddle connections as a parameter is varied." (Steven H Strogatz, "Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering", 2015)

19 January 2023

On Chaos VI

"Despite the disorder observed in Nature, one finds enough traces of the wisdom and power of its Author that one cannot fail to recognize Him." (Pierre L Maupertuis, "Les Loix du Mouvement et du Repos, déduites d'un Principe Métaphysique", 1746)

"Never in the annals of science and engineering has there been a phenomenon so ubiquitous‚ a paradigm so universal‚ or a discipline so multidisciplinary as that of chaos. Yet chaos represents only the tip of an awesome iceberg‚ for beneath it lies a much finer structure of immense complexity‚ a geometric labyrinth of endless convolutions‚ and a surreal landscape of enchanting beauty. The bedrock which anchors these local and global bifurcation terrains is the omnipresent nonlinearity that was once wantonly linearized by the engineers and applied scientists of yore‚ thereby forfeiting their only chance to grapple with reality." (Leon O Chua, "Editorial", International Journal of Bifurcation and Chaos, Vol. l (1), 1991)

"Most of us use the word 'chaos' rather loosely to represent anything that occurs randomly, so it is natural to think that the motion described by the erratic pendulum above is completely random. Not so. The scientific definition of chaos is different from the one you may be used to in that it has an element of determinism in it. This might seem strange, as determinism and chaos are opposites of one another, but oddly enough they are also compatible." (Barry R Parker, "Chaos in the Cosmos: The stunning complexity of the universe", 1996)

"Nonlinearity is important because it can lead to chaos. That's not to say that we get chaos all the time with nonlinear equations; in practice it only occurs under certain conditions." (Barry R Parker, "Chaos in the Cosmos: The stunning complexity of the universe", 1996)

"What chaos implies is not catastrophes, but rather our inability to make long-range predictions [...]" (Barry R Parker, "Chaos in the Cosmos: The stunning complexity of the universe", 1996)

"What is chaos? Everyone has an impression of what the word means, but scientifically chaos is more than random behavior, lack of control, or complete disorder. [...] Scientifically, chaos is defined as extreme sensitivity to initial conditions. If a system is chaotic, when you change the initial state of the system by a tiny amount you change its future significantly." (Barry R Parker, "Chaos in the Cosmos: The stunning complexity of the universe", 1996)

"According to a 'sociological' view of mathematics, a system, in general, should be able to do whatever is permitted by the laws governing it: the normal state of anarchy is chaos! From this point of view, we should expect that, in the absence of conservation laws, typical motions should be dense in the space available to them; Kolomogorov’s theorem denies this, saying that when the laws are relaxed a bit, the majority of motions stay 'pretty much' where they were, as if in fear of a non-existent police force." (John H Hubbard, "The KAM Theorem", 2004)

"An apparent paradox is that chaos is deterministic, generated by fixed rules which do not themselves involve any elements of change. We even speak of deterministic chaos. In principle, the future is completely determined by the past; but in practice small uncertainties, much like minute errors of measurement which enter into calculations, are amplified, with the effect that even though the behavior is predictable in the short term, it is unpredictable over the long term." (Heinz-Otto Peitgen et al, "Chaos and Fractals: New Frontiers of Science" 2nd Ed., 2004)

"Chaos theory, too, is occasionally in danger of being overtaxed by being associated with everything that can be even superficially related to the concept of chaos. Unfortunately, a sometimes extravagant popularization through the media is also contributing to this danger; but at the same time this popularization is also an important opportunity to free areas of mathematics from their intellectual ghetto and to show that mathematics is as alive and important as ever." (Heinz-Otto Peitgen et al, "Chaos and Fractals: New Frontiers of Science" 2nd Ed., 2004)

"Natural laws, and for that matter determinism, do not exclude the possibility of chaos. In other words, determinism and predictability are not equivalent. And what is an even more surprising rinding of recent chaos theory has been the discovery that these effects are observable in many systems which are much simpler than the weather. [...] Moreover, chaos and order (i.e., the causality principle) can be observed in juxtaposition within the same system. There may be a linear progression of errors characterizing a deterministic system which is governed by the causality principle, while (in the same system) there can also be an exponential progression of errors (i.e., the butterfly effect) indicating that the causality principle breaks down." (Heinz-Otto Peitgen et al, "Chaos and Fractals: New Frontiers of Science" 2nd Ed., 2004)

Barry R Parker - Collected Quotes

"Chaos appears in both dissipative and conservative systems, but there is a difference in its structure in the two types of systems. Conservative systems have no attractors. Initial conditions can give rise to periodic, quasiperiodic, or chaotic motion, but the chaotic motion, unlike that associated with dissipative systems, is not self-similar. In other words, if you magnify it, it does not give smaller copies of itself. A system that does exhibit self-similarity is called fractal. [...] The chaotic orbits in conservative systems are not fractal; they visit all regions of certain small sections of the phase space, and completely avoid other regions. If you magnify a region of the space, it is not self-similar." (Barry R Parker, "Chaos in the Cosmos: The stunning complexity of the universe", 1996)

"Geometry gives us a way of turning numbers into pictures." (Barry R Parker, "Chaos in the Cosmos: The stunning complexity of the universe", 1996)

"General relativity, one of the most famous theories, is formulated in terms of a nonlinear equation. This makes us wonder if some of the phenomena described by general relativity, namely black holes, objects orbiting black holes, and even the universe itself, can become chaotic under certain circumstances. [...] The problem is the equation itself, namely the equation of general relativity; it is so complex that the most general solution has never been obtained. It has, of course, been solved for many simple systems; if the system has considerable symmetry (e.g., it is spherical) the equation reduces to a number of ordinary equations that can be solved, but chaos does not occur in these cases. In more realistic cases—situations that actually occur in nature - chaos may occur, but the equations are either unsolvable or very difficult to solve. This presents a dilemma. If we try to model the system using many simplifications it won't exhibit chaos, but if we model it realistically we can't solve it." (Barry R Parker, "Chaos in the Cosmos: The stunning complexity of the universe", 1996)

"Most of us use the word 'chaos' rather loosely to represent anything that occurs randomly, so it is natural to think that the motion described by the erratic pendulum above is completely random. Not so. The scientific definition of chaos is different from the one you may be used to in that it has an element of determinism in it. This might seem strange, as determinism and chaos are opposites of one another, but oddly enough they are also compatible." (Barry R Parker, "Chaos in the Cosmos: The stunning complexity of the universe", 1996)

"Noise is a problem in most signals. [...] It's easy to see that noise is random; it fluctuates erratically with no pattern." (Barry R Parker, "Chaos in the Cosmos: The stunning complexity of the universe", 1996)

"Nonlinear equations have many properties and difficulties that linear equations do not have. If a nonlinear equation, for example, describes a collection of objects and we want to find the collective effect of these objects, we cannot merely add their individual effects. Because source and effect are independent of one another, their sum does not give the overall effect. With nonlinear phenomena there are strong interactions between the bodies and the contribution from each is modified by the others. Mathematically this means if we change a variable on one side of the equation it doesn't cause a proportional change in the variable on the other side." (Barry R Parker, "Chaos in the Cosmos: The stunning complexity of the universe", 1996)

"Nonlinearity is important because it can lead to chaos. That's not to say that we get chaos all the time with nonlinear equations; in practice it only occurs under certain conditions." (Barry R Parker, "Chaos in the Cosmos: The stunning complexity of the universe", 1996)

"One of the major problems with general relativity is that it is not a theory in the usual sense. In the case of most theories you have a stable background, or frame of reference, and you look for solutions within it. In general relativity the solution is the background - the space-time - and it is not necessarily stable," (Barry R Parker, "Chaos in the Cosmos: The stunning complexity of the universe", 1996)

"One of the reasons we deal with the pendulum is that it is easy to plot its motion in phase space. If the amplitude is small, it's a two-dimensional problem, so all we need to specify it completely is its position and its velocity. We can make a two-dimensional plot with one axis (the horizontal), position, and the other (the vertical), velocity." (Barry R Parker, "Chaos in the Cosmos: The stunning complexity of the universe", 1996)

"The problems associated with the initial singularity of the universe bring us to what is called the theory of everything. It is an all-encompassing theory that would completely explain me origin of the universe and everything in it. It would bring together general relativity and quantum mechanics, and explain everything there is to know about the elementary particles of the universe, and the four basic forces of nature (gravitational, electromagnetic, weak, and strong nuclear forces). Furthermore, it would explain the basic laws of nature and the fundamental constants of nature such as the speed of light and Planck's constant." (Barry R Parker, "Chaos in the Cosmos: The stunning complexity of the universe", 1996)

"The reason general relativity cannot be unified with electromagnetic theory seems to be related to its nonlinearity. To unify the two fields properly we have to construct a "quantized" version of relativity; in other words, we have to quantize it, and so far no one has." (Barry R Parker, "Chaos in the Cosmos: The stunning complexity of the universe", 1996)

"What chaos implies is not catastrophes, but rather our inability to make long-range predictions [...]" (Barry R Parker, "Chaos in the Cosmos: The stunning complexity of the universe", 1996)

"What is chaos? Everyone has an impression of what the word means, but scientifically chaos is more than random behavior, lack of control, or complete disorder. [...] Scientifically, chaos is defined as extreme sensitivity to initial conditions. If a system is chaotic, when you change the initial state of the system by a tiny amount you change its future significantly." (Barry R Parker, "Chaos in the Cosmos: The stunning complexity of the universe", 1996)

"What is renormalization? First of all, if scaling is present we can go to smaller scales and get exactly the same result. In a sense we are looking at the system with a microscope of increasing power. If you take the limit of such a process you get a stability that is not otherwise present. In short, in the renormalized system, the self-similarity is exact, not approximate as it usually is. So renormalization gives stability and exactness." (Barry R Parker, "Chaos in the Cosmos: The stunning complexity of the universe", 1996)

11 December 2022

Julien C Sprott - Collected Quotes

"A system of equations is deemed most elegant if it contains no un- necessary terms or parameters and if the parameters that remain have a minimum of digits. [...] Just as one can find the most elegant set of parameters for a given system, it is possible to find the most elegant set of initial conditions within the basin of attraction or chaotic sea. However, it is usually more useful to have initial conditions that are close to the attractor to reduce the transients that would otherwise occur."  (Julien C Sprott, "Elegant Chaos: Algebraically Simple Chaotic Flows", 2010)

"Another property of bounded systems is that, unless the trajectory attracts to an equilibrium point where it stalls and remains forever, the points must continue moving forever with the flow. However, if we consider two initial conditions separated by a small distance along the direction of the flow, they will maintain their average separation forever since they are subject to the exact same flow but only delayed slightly in time. This fact implies that one of the Lyapunov exponents for a bounded continuous flow must be zero unless the flow attracts to a stable equilibrium." (Julien C Sprott, "Elegant Chaos: Algebraically Simple Chaotic Flows", 2010)

"In a chaotic system, there must be stretching to cause the exponential separation of initial conditions but also folding to keep the trajectories from moving off to infinity. The folding requires that the equations of motion contain at least one nonlinearity, leading to the important principle that chaos is a property unique to nonlinear dynamical systems. If a system of equations has only linear terms, it cannot exhibit chaos no matter how complicated or high-dimensional it may be." (Julien C Sprott, "Elegant Chaos: Algebraically Simple Chaotic Flows", 2010)

"In fact, contrary to intuition, some of the most complicated dynamics arise from the simplest equations, while complicated equations often produce very simple and uninteresting dynamics. It is nearly impossible to look at a nonlinear equation and predict whether the solution will be chaotic or otherwise complicated. Small variations of a parameter can change a chaotic system into a periodic one, and vice versa." (Julien C Sprott, "Elegant Chaos: Algebraically Simple Chaotic Flows", 2010)

"In fact, there are as many Lyapunov exponents as there are state space variables, and what was calculated is only the largest (or least negative) of them. Fortunately, this is the only one that is required to identify chaos, since if it is positive, the system exhibits sensitive dependence on initial conditions independent of the values of the others, and if it is zero or negative, none of the others can be positive either." (Julien C Sprott, "Elegant Chaos: Algebraically Simple Chaotic Flows", 2010)

"Systems with dimension greater than four begin to lose their elegance unless they possess some kind of symmetry that reduces the number of parameters. One such symmetry has the variables arranged in a ring of many identical elements, each connected to its neighbors in an identical fashion. The symmetry of the equations is often broken in the solutions, giving rise to spatiotemporal chaotic patterns that are elegant in their own right." (Julien C Sprott, "Elegant Chaos: Algebraically Simple Chaotic Flows", 2010)

"The main defining feature of chaos is the sensitive dependence on initial conditions. Two nearby initial conditions on the attractor or in the chaotic sea separate by a distance that grows exponentially in time when averaged along the trajectory, leading to long-term unpredictability. The Lyapunov exponent is the average rate of growth of this distance, with a positive value signifying sensitive dependence (chaos), a zero value signifying periodicity (or quasiperiodicity), and a negative value signifying a stable equilibrium." (Julien C Sprott, "Elegant Chaos: Algebraically Simple Chaotic Flows", 2010)

"The possible existence of multiple attractors means that it is necessary to search different initial conditions as well as different parameters when determining whether a given dynamical system is capable of exhibiting chaos." (Julien C Sprott, "Elegant Chaos: Algebraically Simple Chaotic Flows", 2010)

"Transient chaos can be viewed as a situation in which an attractor touches its basin of attraction but only at places that are rarely visited by the trajectory. The trajectory is initially drawn to the attractor and wanders around on it for a long time before eventually coming to a place outside the basin of attraction, whereupon it escapes. Think of a fly buzzing around in a box for a long time before discovering a small hole in the wall that leads to the outside world. Of course the hole could also be a small patch of flypaper that would bring the °y to a permanent halt, just as a stable equilibrium might for a transiently chaotic trajectory." (Julien C Sprott, "Elegant Chaos: Algebraically Simple Chaotic Flows", 2010)

19 May 2022

On Bifurcations II

"Never in the annals of science and engineering has there been a phenomenon so ubiquitous‚ a paradigm so universal‚ or a discipline so multidisciplinary as that of chaos. Yet chaos represents only the tip of an awesome iceberg‚ for beneath it lies a much finer structure of immense complexity‚ a geometric labyrinth of endless convolutions‚ and a surreal landscape of enchanting beauty. The bedrock which anchors these local and global bifurcation terrains is the omnipresent nonlinearity that was once wantonly linearized by the engineers and applied scientists of yore‚ thereby forfeiting their only chance to grapple with reality." (Leon O Chua, "Editorial", International Journal of Bifurcation and Chaos, Vol. l (1), 1991) 

"[…] bifurcations - the abrupt changes that can take place in the behavior, and often in the complexity, of a system when the value of a constant is altered slightly." (Edward N Lorenz, "The Essence of Chaos", 1993)

"Bifurcation is just such a term, lying at the core of a science that offers a means of understanding systems and phenomena previously beyond the grasp of any science. In fact, of all the terms drawn from chaos theory and the general theory of systems, bifurcation may turn out to be the most important. First because it aptly describes the single most important kind of experience shared by nearly all people in today’s world, and second because it accurately describes the single most decisive event shaping the future of contemporary societies." (Ervin László, "Vision 2020: Reordering Chaos for Global Survival", 1994)

"In the realms of nature it is impossible to predict which way a bifurcation will cut. The outcome of a bifurcation is determined neither by the past history of a system nor by its environment, but only by the interplay of more or less random fluctuations in the chaos of critical destabilization. One or another of the fluctuations that rock such a system will suddenly 'nucleate'. The nucleating fluctuation will amplify with great rapidity and spread to the rest of the system. In a surprisingly short time, it dominates the system’s dynamics. The new order that is then born from the womb of chaos reflects the structural and functional characteristics of the nucleated fluctuation. [...] Bifurcations are more visible, more frequent, and more dramatic when the systems that exhibit them are close to their thresholds of stability—when they are all but choked out of existence." (Ervin László, "Vision 2020: Reordering Chaos for Global Survival", 1994)

"Just what is bifurcation? Like chaos, this is a word that means something other than it used to. Chaos used to mean disorder and confusion. Now it means subtle, complex, ultrasensitive kinds of order. Bifurcation in turn used to mean splitting into two forks (from the Latin bi, meaning two, and furca, meaning fork). But today bifurcation means something more specific than that: in contemporary scientific usage this term signifies a fundamental characteristic in the behavior of complex systems when exposed to high constraint and stress. It is important to know about this meaning because we ourselves, no less than the societies and environments in which we live, are complex systems exposed to constraints and stress. In fact, in many contemporary societies levels of stress are now reaching critical dimensions." (Ervin László, "Vision 2020: Reordering Chaos for Global Survival", 1994)

"When a system is 'stressed' beyond certain threshold limits as, for example, when it is heated up, or its pressure is increased, it shifts from one set of attractors to another and then behaves differently. To use the language of the theory, the system 'settles into a new dynamic regime'. It is at the point of transition that a bifurcation takes place. The system no longer follows the trajectory of its initial attractors, but responds to new attractors that make the system appear to be behaving randomly. It is not behaving randomly, however, and this is the big shift in our understanding caused by dynamical systems theory. It is merely responding to a new set of attractors that give it a more complex trajectory. The term bifurcation, in its most significant sense, refers to the transition of a system from the dynamic regime of one set of attractors, generally more stable and simpler ones, to the dynamic regime of a set of more complex and 'chaotic' attractors." (Ervin László, "Vision 2020: Reordering Chaos for Global Survival", 1994)

"The concept of bifurcation, present in the context of non-linear dynamic systems and theory of chaos, refers to the transition between two dynamic modalities qualitatively distinct; both of them are exhibited by the same dynamic system, and the transition (bifurcation) is promoted by the change in value of a relevant numeric parameter of such system. Such parameter is named 'bifurcation parameter', and in highly non-linear dynamic systems, its change can produce a large number of bifurcations between distinct dynamic modalities, with self-similarity and fractal structure. In many of these systems, we have a cascade of numberless bifurcations, culminating with the production of chaotic dynamics." (Emilio Del-Moral-Hernandez, "Chaotic Neural Networks", Encyclopedia of Artificial Intelligence, 2009)

"In mathematical models, a bifurcation occurs when a small change made to a parameter value of a system causes a sudden qualitative or topological change in its behavior." (Dmitriy Laschov & Michael Margaliot, "Mathematical Modeling of the λ Switch: A Fuzzy Logic Approach", 2010)

"The qualitative structure of the flow can change as parameters are varied. In particular, fixed points can be created or destroyed, or their stability can change. These qualitative changes in the dynamics are called bifurcations, and the parameter values at which they occur are called bifurcation points. Bifurcations are important scientifically - they provide models of transitions and instabilities as some control parameter is varied." (Steven H Strogatz, "Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering", 2015)

"[…] what exactly do we mean by a bifurcation? The usual definition involves the concept of 'topological equivalence': if the phase portrait changes its topological structure as a parameter is varied, we say that a bifurcation has occurred. Examples include changes in the number or stability of fixed points, closed orbits, or saddle connections as a parameter is varied." (Steven H Strogatz, "Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering", 2015)

Related Posts Plugin for WordPress, Blogger...

On Leonhard Euler

"I have been able to solve a few problems of mathematical physics on which the greatest mathematicians since Euler have struggled in va...