Showing posts with label elegance. Show all posts
Showing posts with label elegance. Show all posts

22 August 2025

On Elegance (2010-2019)

"A model is a good model if it: 1. Is elegant 2. Contains few arbitrary or adjustable elements 3. Agrees with and explains all existing observations4. Makes detailed predictions about future observations that can disprove or falsify the model if they are not borne out." (Stephen Hawking & Leonard Mlodinow,"The Grand Design", 2010)

"A proof is simply a story. The characters are the elements of the problem, and the plot is up to you. The goal, as in any literary fiction, is to write a story that is compelling as a narrative. In the case of mathematics, this means that the plot not only has to make logical sense but also be simple and elegant. No one likes a meandering, complicated quagmire of a proof. We want to follow along rationally to be sure, but we also want to be charmed and swept off our feet aesthetically. A proof should be lovely as well as logical." (Paul Lockhart, "Measurement", 2012)

"Nothing illustrates the extraordinary power of complex function theory better than the ease and elegance with which it yields results which challenged and often baffled the very greatest mathematicians of an earlier age." (Peter D Lax & Lawrence Zalcman, "Complex proofs of real theorems", 2012)

"The ultimate arbiter of truth is experiment, not the comfort one derives from one's a priori beliefs, nor the beauty or elegance one ascribes to one's theoretical models." (Lawrence M Krauss, "A Universe from Nothing: Why There Is Something Rather than Nothing", 2012)

"The correlation coefficient has two fabulously attractive characteristics. First, for math reasons that have been relegated to the appendix, it is a single number ranging from –1 to 1. A correlation of 1, often described as perfect correlation, means that every change in one variable is associated with an equivalent change in the other variable in the same direction. A correlation of –1, or perfect negative correlation, means that every change in one variable is associated with an equivalent change in the other variable in the opposite direction. The closer the correlation is to 1 or –1, the stronger the association. […] The second attractive feature of the correlation coefficient is that it has no units attached to it. […] The correlation coefficient does a seemingly miraculous thing: It collapses a complex mess of data measured in different units (like our scatter plots of height and weight) into a single, elegant descriptive statistic." (Charles Wheelan, "Naked Statistics: Stripping the Dread from the Data", 2012)

"This is what it means to do mathematics. To make a discovery (by whatever means, including playing around with physical models like paper, string, and rubber bands), and then to explain it in the simplest and most elegant way possible. This is the art of it, and this is why it is so challenging and fun." (Paul Lockhart, "Measurement", 2012)

26 May 2022

On Elegance (Unsourced)

"A proof tells us where to concentrate our doubts. […] An elegantly executed proof is a poem in all but the form in which it is written." (Morris Kline)

"Complex numbers are really not as complex as you might expect from their name, particularly if we think of them in terms of the underlying two dimensional geometry which they describe. Perhaps it would have been better to call them 'nature's numbers'. Behind complex numbers is a wonderful synthesis between two dimensional geometry and an elegant arithmetic in which every polynomial equation has a solution."

"Engineering is not merely knowing and being knowledgeable, like a walking encyclopedia; engineering is not merely analysis; engineering is not merely the possession of the capacity to get elegant solutions to non-existent engineering problems; engineering is practicing the art of the organizing forces of technological change. [...] Engineers operate at the interface between science and society." (Gordon S Brown)

"I was struck by the art with which mathematicians remove, reject, and little by little eliminate everything that is not necessary for expressing the absolute with the least possible number of terms, while preserving in the arrangement of these terms a discrimination, a parallelism, a symmetry which seems to be the visible elegance and beauty of an eternal idea." (Edgar Quinet)   

"In the Theory of Numbers it happens rather frequently that, by some unexpected luck, the most elegant new truths spring up by induction." (Carl F Gauss)

"Mathematics is much more than a language for dealing with the physical world. It is a source of models and abstractions which will enable us to obtain amazing new insights into the way in which nature operates. Indeed, the beauty and elegance of the physical laws themselves are only apparent when expressed in the appropriate mathematical framework." (Melvin Schwartz)

"One would be hard put to find a set of whole numbers with a more fascinating history and more elegant properties surrounded by greater depths of mystery - and more totally useless - than the perfect numbers." (Martin Gardner)

"Pure mathematics can be practically useful and applied mathematics can be artistically elegant." (Paul R Halmos)

"The equations that really work in describing nature with the most generality and the greatest simplicity are very elegant and subtle." (Edward Witten )

"[…] the feeling of mathematical beauty, of the harmony of numbers and of forms, of geometric elegance. It is a genuinely esthetic feeling, which all mathematicians know. And this is sensitivity." (Henri Poincaré)

"The mathematician is perfect only in so far as he is a perfect being, in so far as he perceives the beauty of truth; only then will his work be thorough, transparent, comprehensive, pure, clear, attractive, and even elegant." (Johann Wolfgang von Goethe)

"There is no getting out of it. Through and through the world is infected with quantity. To talk sense is to talk in quantities. […] You cannot evade quantity. You may fly to poetry and to music, and quantity and number will face you in your rhythms and your octaves. Elegant intellects which despise the theory of quantity are but half developed. They are more to be pitied than blamed." (Alfred N Whitehead)

"There was a moment when I knew how nature worked. It had elegance and beauty. The goddamn thing was gleaming." (Richard Feynman)

"Today we can say that the abstract beauty of the theory is flanked by the plastic beauty of the curve, a beauty that is astounding. Thus, within this mathematics that is a hundred years old, very elegant from a formal point of view, very beautiful for specialists, there is also a physical beauty that is accessible to everyone. [...] By letting the eye and the hand intervene in the mathematics, not only have we found again the ancient beauty, which remains intact, but we have also discovered a new beauty, hidden and extraordinary. [...] Those who are only concerned with practical applications may perhaps tend not to insist too much on the artistic aspect, because they prefer to entrench themselves in the technicalities that appertain to practical applications. But why should the rigorous mathematician be afraid of beauty?" (Benoît B Mandelbrot)

"What is especially striking and remarkable is that in fundamental physics, a beautiful or elegant theory is more likely to be right than a theory that is inelegant. A theory appears to be beautiful or elegant (or simple, if you prefer) when it can be expressed concisely in terms of mathematics we already have." (Murray Gell-Mann)

On Elegance (2000-2009)

"Prime numbers belong to an exclusive world of intellectual conceptions. We speak of those marvelous notions that enjoy simple, elegant description, yet lead to extreme - one might say unthinkable - complexity in the details. The basic notion of primality can be accessible to a child, yet no human mind harbors anything like a complete picture. In modern times, while theoreticians continue to grapple with the profundity of the prime numbers, vast toil and resources have been directed toward the computational aspect, the task of finding, characterizing, and applying the primes in other domains." (Richard Crandall & Carl Pomerance,"Prime Numbers: A Computational Perspective", 2001)

"A good poem has a unified structure, each word fits perfectly, there is nothing arbitrary about it, metaphors hold together and interlock, the sound of a word and its reflections of meaning complement each other. Likewise postmodern physics asks: How well does everything fit together in a theory? How inevitable are its arguments? Are the assumptions well founded or somewhat arbitrary? Is its overall mathematical form particularly elegant?" (F David Peat, "From Certainty to Uncertainty", 2002)

"Complex numbers are really not as complex as you might expect from their name, particularly if we think of them in terms of the underlying two dimensional geometry which they describe. Perhaps it would have been better to call them 'nature's numbers'. Behind complex numbers is a wonderful synthesis between two dimensional geometry and an elegant arithmetic in which every polynomial equation has a solution." (David Mumford, Caroline Series & David Wright, "Indra’s Pearls: The Vision of Felix Klein", 2002)

'"There is an old debate', Erdos liked to say, 'about whether you create mathematics or just discover it. In other words, are the truths already there, even if we don't yet know them?' Erdos had a clear answer to this question: Mathematical truths are there among the list of absolute truths, and we just rediscover them. Random graph theory, so elegant and simple, seemed to him to belong to the eternal truths. Yet today we know that random networks played little role in assembling our universe. Instead, nature resorted to a few fundamental laws [...]. Erdos himself created mathematical truths and an alternative view of our world by developing random graph theory. (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)

"Where we find certainty and truth in mathematics we also find beauty. Great mathematics is characterized by its aesthetics. Mathematicians delight in the elegance, economy of means, and logical inevitability of proof. It is as if the great mathematical truths can be no other way. This light of logic is also reflected back to us in the underlying structures of the physical world through the mathematics of theoretical physics." (F David Peat, "From Certainty to Uncertainty", 2002)

"[…] admiration for elegant symmetry never dies […]" (Robert Kaplan & Ellen Kaplan, "The Art of the Infinite: The Pleasures of Mathematics", 2003)

"Pure mathematics was characterized by an obsession with proof, rigor, beauty, and elegance, and sought its foundations in the disembodied worlds of logic or intuition. Far from being coextensive with physics, pure mathematics could be ‘applied’ only after it had been made foundationally secure by the purists." (Andrew Warwick,"Masters of Theory: Cambridge and the rise of mathematical physics", 2003)

"Proofs should be as short, transparent, elegant, and insightful as possible." (Burkard Polster,"Q.E.D.: Beauty in Mathematical Proof", 2004)

"Theoretical physics borrows from mathematics (or, if there's none to borrow, they invent new mathematics) in order to create a mathematical roadmap of things that can happen in the real world, in nature. It strives to explain all of the many different phenomena observed in the universe, perhaps ultimately seeking one elegant and economical logical system. However, physicists usually settle for lesser triumphs, in which many physical systems with common and comprehensible behaviors are successfully described. This description is always created in the abstract language of mathematics." (Leon M Lederman & Christopher T Hill, "Symmetry and the Beautiful Universe", 2004)

"Elegance and simplicity should remain important criteria in judging mathematics, but the applicability and consequences of a result are also important, and sometimes these criteria conflict. I believe that some fundamental theorems do not admit simple elegant treatments, and the proofs of such theorems may of necessity be long and complicated. Our standards of rigor and beauty must be sufficiently broad and realistic to allow us to accept and appreciate such results and their proofs. As mathematicians we will inevitably use such theorems when it is necessary in the practice our trade; our philosophy and aesthetics should reflect this reality." (Michael Aschbacher,"Highly complex proofs and implications", 2005)

"Evolution moves towards greater complexity, greater elegance, greater knowledge, greater intelligence, greater beauty, greater creativity, and greater levels of subtle attributes such as love. […] Of course, even the accelerating growth of evolution never achieves an infinite level, but as it explodes exponentially it certainly moves rapidly in that direction." (Ray Kurzweil, "The Singularity is Near", 2005)

"We all know what we like in music, painting or poetry, but it is much harder to explain why we like it. The same is true in mathematics, which is, in part, an art form. We can identify a long list of desirable qualities: beauty, elegance, importance, originality, usefulness, depth, breadth, brevity, simplicity, clarity. However, a single work can hardly embody them all; in fact, some are mutually incompatible. Just as different qualities are appropriate in sonatas, quartets or symphonies, so mathematical compositions of varying types require different treatment." (Michael Atiyah,"Mathematics: Art and Science" Bulletin of the AMS 43, 2006)

"Mathematical problems, or puzzles, are important to real mathematics (like solving real-life problems), just as fables, stories, and anecdotes are important to the young in understanding real life. Mathematical problems are ‘sanitized’ mathematics, where an elegant solution has already been found (by someone else, of course), the question is stripped of all superfluousness and posed in an interesting and (hopefully) thought-provoking way. If mathematics is likened to prospecting for gold, solving a good mathematical problem is akin to a ‘hide-and-seek’ course in gold-prospecting: you are given a nugget to find, and you know what it looks like, that it is out there somewhere, that it is not too hard to reach, that it is unearthing within your capabilities, and you have conveniently been given the right equipment (i.e. data) to get it. It may be hidden in a cunning place, but it will require ingenuity rather than digging to reach it." (Terence Tao, "Solving Mathematical Problems: A Personal Perspective", 2006)

"We all know what we like in music, painting or poetry, but it is much harder to explain why we like it. The same is true in mathematics, which is, in part, an art form. We can identify a long list of desirable qualities: beauty, elegance, importance, originality, usefulness, depth, breadth, brevity, simplicity, clarity. However, a single work can hardly embody them all; in fact, some are mutually incompatible. Just as different qualities are appropriate in sonatas, quartets or symphonies, so mathematical compositions of varying types require different treatment." (Michael Atiyah, "Mathematics: Art and Science" Bulletin of the AMS 43, 2006)

"Mathematicians, then, do not just care about proving theorems: they care about proving interesting, deep, fruitful theorems, by means of elegant, ingenious, explanatory, memorable, or even amusing proofs. If we wish to understand more about the character of mathematical knowledge, we ought to investigate these kinds of evaluative claims made by mathematicians." (Mary Leng ["Mathematical Knowledge", Ed. by Mary Leng, Alexander Paseau and Michael Potter], 2007)

"A theory appears to be beautiful or elegant (or simple, if you prefer) when it can be expressed concisely in terms of mathematics we already have." (Murray Gell-Mann, "Beauty and Truth in Physics", 2007)

"Physicists have been drawn to elegant mathematical relationships that bind the subject together with economy and style, melding disparate qualities in subtle and harmonious ways. But this is to import a new factor into the argument - questions of aesthetics and taste. We are then on shaky ground indeed. It may be that M theory looks beautiful to its creators, but ugly to N theorists, who think that their theory is the most elegant. But then the O theorists disagree with both groups [...]" (Paul C W Davies, "Cosmic Jackpot: Why Our Universe Is Just Right for Life", 2007)

"I enjoy mathematics so much because it has a strange kind of unearthly beauty. There is a strong feeling of pleasure, hard to describe, in thinking through an elegant proof, and even greater pleasure in discovering a proof not previously known." (Martin Gardner, 2008)

"In mathematics, it’s the limitations of a reasoned argument with the tools you have available, and with magic it’s to use your tools and sleight of hand to bring about a certain effect without the audience knowing what you’re doing. [...]When you’re inventing a trick, it’s always possible to have an elephant walk on stage, and while the elephant is in front of you, sneak something under your coat, but that’s not a good trick. Similarly with mathematical proof, it is always possible to bring out the big guns, but then you lose elegance, or your conclusions aren’t very different from your hypotheses, and it’s not a very interesting theorem." (Persi Diaconis, 2008)

"We can describe general relativity using either of two mathematically equivalent ideas: curved space-time or metric field. Mathematicians, mystics and specialists in general relativity tend to like the geometric view because of its elegance. Physicists trained in the more empirical tradition of high-energy physics and quantum field theory tend to prefer the field view, because it corresponds better to how we (or our computers) do concrete calculations." (Frank Wilczek, "The Lightness of Being: Mass, Ether, and the Unification of Forces", 2008)

"Many terms that are used to comment on games are aesthetic allusions, indicating that among chess players it is hard to separate out the game’s creative and analytic aspects. Terms that are frequently used include subtlety, depth, beauty, surprise, vision, brilliance, elegance, harmony, and symmetry." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

"There are three reasons for the study of inequalities: practical, theoretical and aesthetic. In many practical investigations, it is necessary to bound one quantity by another. The classical inequalities are very useful for this purpose. From the theoretical point of view, very simple questions give rise to entire theories. […] Finally, let us turn to the aesthetic aspects. As has been pointed out, beauty is in the eye of the beholder. However. it is generally agreed that certain pieces of music, art, or mathematics are beautiful. There is an elegance to inequalities that makes them very attractive." (Claudi Alsina & Roger B Nelsen, "When Less is More: Visualizing Basic Inequalities", 2009)

On Elegance (1990-1999)

"Prime numbers. It was all so neat and elegant. Numbers that refuse to cooperate, that don’t change or divide, numbers that remain themselves for all eternity." (Paul Auster,"The Music of Chance", 1990)

"It is important to emphasize the value of simplicity and elegance, for complexity has a way of compounding difficulties and as we have seen, creating mistakes. My definition of elegance is the achievement of a given functionality with a minimum of mechanism and a maximum of clarity." (Fernando J Corbató, "On Building Systems That Will Fail", 1991)

"Model building is the art of selecting those aspects of a process that are relevant to the question being asked. As with any art, this selection is guided by taste, elegance, and metaphor; it is a matter of induction, rather than deduction. High science depends on this art." (John H Holland," Hidden Order: How Adaptation Builds Complexity", 1995)

"Probably the most important reason that catastrophe theory received as much popular press as it did in the mid-1970s is not because of its unchallenged mathematical elegance, but because it appears to offer a coherent mathematical framework within which to talk about how discontinuous behaviors - stock market booms and busts or cellular differentiation, for instance - might emerge as the result of smooth changes in the inputs to a system, things like interest rates in a speculative market or the diffusion rate of chemicals in a developing embryo. These kinds of changes are often termed bifurcations, and playa central role in applied mathematical modeling. Catastrophe theory enables us to understand more clearly how - and why - they occur." (John L Casti, "Five Golden Rules", 1995)

"How beautifully simple is Wessel’s idea. Multiplying by √-1 is, geometrically, simply a rotation by 90 degrees in the counter clockwise sense [...] Because of this property √-1 is often said to be the rotation operator, in addition to being an imaginary number. As one historian of mathematics has observed, the elegance and sheer wonderful simplicity of this interpretation suggests 'that there is no occasion for anyone to muddle himself into a state of mystic wonderment over the grossly misnamed ‘imaginaries'. This is not to say, however, that this geometric interpretation wasn’t a huge leap forward in human understanding. Indeed, it is only the start of a tidal wave of elegant calculations." (Paul J Nahin, "An Imaginary Tale: The History of √-1", 1998)

"Mathematics is a product - a discovery - of the human mind. It enables us to see the incredible, simple, elegant, beautiful, ordered structure that lies beneath the universe we live in. It is one of the greatest creations of mankind - if it is not indeed the greatest." (Keith Devlin, "Life By the Numbers", 1998)

"Elegance is not a dispensable luxury but a quality that decides between success and failure." (Edsger W. Dijkstra, "Computing Science: Achievements and Challenges", 1999)

"Even the most elegant and beautiful physical theory may disappear without a trace if not confirmed by experiment, while, as a rule, a theorem, once proved, remains in mathematics forever." (Michael I Monastyrsky, "Riemann, Topology, and Physics", 1999)

On Elegance (1980-1989)

"The elegance of a mathematical theorem is directly proportional to the number of independent ideas one can see in the theorem and inversely proportional to the effort it takes to see them." (George Pólya, "Mathematical Discovery", 1981)

"The theory of the visual display of quantitative information consists of principles that generate design options and that guide choices among options. The principles should not be applied rigidly or in a peevish spirit; they are not logically or mathematically certain; and it is better to violate any principle than to place graceless or inelegant marks on paper. Most principles of design should be greeted with some skepticism, for word authority can dominate our vision, and we may come to see only though the lenses of word authority rather than with our own eyes." (Edward R Tufte, "The Visual Display of Quantitative Information", 1983)

"But there is trouble in store for anyone who surrenders to the temptation of mistaking an elegant hypothesis for a certainty: the readers of detective stories know this quite well." (Primo Levi, "The Periodic Table", 1984)

"The equations of physics have in them incredible simplicity, elegance and beauty. That in itself is sufficient to prove to me that there must be a God who is responsible for these laws and responsible for the universe." (Paul C W Davies, 1984)

"In lieu of the traditional confrontation between theory and experiment, superstring theorists pursue an inner harmony where elegance, uniqueness and beauty define truth. The theory depends for its existence upon magical coincidences, miraculous cancellations and relations among seemingly unrelated (and possibly undiscovered) fields of mathematics." (Sheldon L Glashow, "Desperately Seeking Superstrings?", Physics Today, 1986)

"The system always kicks back. - Systems get in the way - or, in slightly more elegant language: Systems tend to oppose their own proper functions. Systems tend to malfunction conspicuously just after their greatest triumph." (John Gall, "Systemantics: The underground text of systems lore", 1986)

"Nonlinear systems (the graph of at least one relationship displays some curved feature) are notoriously more difficult to comprehend than linear systems, that is, they are more complex. Consequently they are also more difficult to control. This is exemplified by the volumes of elegant mathematics that have been developed in the search for optimal control of linear systems." (Robert L Flood & Ewart R Carson, "Dealing with Complexity: An introduction to the theory and application of systems", 1988)

On Elegance (1950-1979)

"[…] no branch of mathematics competes with projective geometry in originality of ideas, coordination of intuition in discovery and rigor in proof, purity of thought, logical finish, elegance of proofs and comprehensiveness of concepts. The science born of art proved to be an art." (Morris Kline, "Projective Geometry", Scientific America Vol. 192 (1), 1955)

"[...] nature seems to take advantage of the simple mathematical representations of the symmetry laws. When one pauses to consider the elegance and the beautiful perfection of the mathematical reasoning involved and contrast it with the complex and far-reaching physical consequences, a deep sense of respect for the power of the symmetry laws never fails to develop." (Chen-Ning Yang, "The Law of Parity Conservation and Other Symmetry Laws of Physics", [Nobel lecture] 1957)

"All scientific activity amounts to the invention of and the choice among systems of hypotheses. One of the primary considerations guiding this process is that of simplicity. Nothing could be much more mistaken than the traditional idea that we first seek a true system and then, for the sake of elegance alone, seek a simple one." (Nelson Goodman, "The Test of Simplicity", Science Vol. 128, 1958)

"It is sometimes said of two expositions of one and the same mathematical proof that the one is simpler or more elegant than the other. This is a distinction which has little interest from the point of view of the theory of knowledge; it does not fall within the province of logic, but merely indicates a preference of an aesthetic or pragmatic character." (Karl Popper, "The Logic of Scientific Discovery", 1959)

"How can it be that writing down a few simple and elegant formulae, like short poems governed by strict rules such as those of the sonnet or the waka, can predict universal regularities of Nature? Perhaps we see equations as simple because they are easily expressed in terms of mathematical notation already invented at an earlier stage of development of the science, and thus what appears to us as elegance of description really reflects the interconnectedness of Nature’s laws at different levels." (Murray Gell-Mann, 1969)

"Mathematics is much more than a language for dealing with the physical world. It is a source of models and abstractions which will enable us to obtain amazing new insights into the way in which nature operates. Indeed, the beauty and elegance of the physical laws themselves are only apparent when expressed in the appropriate mathematical framework." (Melvin Schwartz, "Principles of Electrodynamics", 1972)

"Though we can say that mathematics is not art, some mathematicians think of themselves as artists of pure form. It seems clear, however, that their elegant and near aesthetic forms fail as art, because they are secondary visual ideas, the product of an intellectual set of restraints, rather than the cause of a felt insight realized in and through visual form." (Robert E Mueller, "Idols of Computer Art", 1972) 

"But there is trouble in store for anyone who surrenders to the temptation of mistaking an elegant hypothesis for a certainty: the readers of detective stories know this quite well. (Primo Levi, "The Periodic Table", 1975)

"What the scientists have always found by physical experiment was an a priori orderliness of nature, or Universe always operating at an elegance level that made the discovering scientist's working hypotheses seem crude by comparison. The discovered reality made the scientists exploratory work seem relatively disorderly." (Buckminster Fuller, "Synergetics: Explorations in the Geometry of Thinking", 1975)

"The esthetic side of mathematics has been of overwhelming importance throughout its growth. It is not so much whether a theorem is useful that matters, but how elegant it is." (Stanislaw Ulam, "Adventures of a Mathematician", 1976)

"It is not so much whether a theorem is useful that matters, but how elegant it is. (Stanislaw M Ulam, "Adventures of a Mathematician", 1976)

"The esthetic side of mathematics has been of overwhelming importance throughout its growth. It is not so much whether a theorem is useful that matters, but how elegant it is." (Stanislaw M Ulam, "Adventures of a Mathematician", 1976)

"[…] statistics - whatever their mathematical sophistication and elegance - cannot make bad variables into good ones." (H T Reynolds, "Analysis of Nominal Data", 1977)

"[...] despite an objectivity about mathematical results that has no parallel in the world of art, the motivation and standards of creative mathematics are more like those of art than of science. Aesthetic judgments transcend both logic and applicability in the ranking of mathematical theorems: beauty and elegance have more to do with the value of a mathematical idea than does either strict truth or possible utility." (Lynn A Steen, "Mathematics Today: Twelve Informal Essays", Mathematics Today, 1978)

On Elegance (1900-1949)

"Mathematicians will do well to observe that a reasonable acquaintance with theoretical physics at its present stage of development, to mention only such broad subjects as electricity, elastics, hydrodynamics, etc., is as much as most of us can keep permanently assimilated. It should also be remembered that the step from the formal elegance of theory to the brute arithmetic of the special case is always humiliating, and that this labor usually falls to the lot of the physicist." (Carl Barus, "The Mathematical Theory of the Top", 1898)

"What are the mathematical entities to which we attribute this character of beauty and elegance, which are capable of developing in us a kind of aesthetic emotion? Those whose elements are harmoniously arranged so that the mind can, without effort, take in the whole without neglecting the details. This harmony is at once a satisfaction to out esthetic requirements, and an assistance to the mind which supports and guides." (Henri Poincaré, 1908)

"Mathematicians attach great importance to the elegance of their methods and their results. This is not pure dilettantism. What is it indeed that gives us the feeling of elegance in a solution, in a demonstration? It is the harmony of the diverse parts, their symmetry, their happy balance; in a word it is all that introduces order, all that gives unity, that permits us to see clearly and to comprehend at once both the ensemble and the details." (Henri Poincaré,"The Future of Mathematics", Monist Vol. 20, 1910)

"[...] what are the mathematic entities to which we attribute this character of beauty and elegance, and which are capable of developing in us a sort of esthetic emotion? They are those whose elements are harmoniously disposed so that the mind without effort can embrace their totality while realizing the details. This harmony 'is at once a satisfaction of our esthetic needs and an aid to the mind, sustaining and guiding." (Henri Poincaré, "Mathematical Creation", Monist Vol. 20, 1910)

"Elegance may produce the feeling of the unforeseen by the unexpected meeting of objects we are not accustomed to bring together; there again it is fruitful, since it thus unveils for us kinships before unrecognized. It is fruitful even when it results only from the contrast between the simplicity of the means and the complexity of the problem set; it makes us then think of the reason for this contrast and very often makes us see that chance is not the reason; that it is to be found in some unexpected law. In a word, the feeling of mathematical elegance is only the satisfaction due to any adaptation of the solution to the needs of our mind, and it is because of this very adaptation that this solution can be for us an instrument. Consequently this esthetic satisfaction is bound up with the economy of thought." (Jules Henri Poincaré, "The Future of Mathematics", Monist Vol. 20, 1910)

"It may be surprising to see emotional sensibility invoked apropos of mathematical demonstrations which, it would seem, can interest only the intellect. This would be to forget the feeling of mathematical beauty, of the harmony of numbers and forms, of geometric elegance. This is a true esthetic feeling that all real mathematicians know, and surely it belongs to emotional sensibility." (Henri Poincaré, 1913)

"Rhythm, symmetry, and a happy combination of elegance and utility - a blend often desired in later days of hope and struggle - these have been fully attained, and with them a delight in quiet communion with Nature, expressing as she does the sense of beauty in orderliness." (Marie-Luise Gothein, "A History of Garden Art", 1928)

"It is sometimes said of two expositions of one and the same mathematical proof that the one is simpler or more elegant than the other. This is a distinction which has little interest from the point of view of the theory of knowledge; it does not fall within the province of logic, but merely indicates a preference of an aesthetic or pragmatic character." (Karl R Popper,"The Logic of Scientific Discovery", 1934)

"Mathematicians themselves set up standards of generality and elegance in their exposition which are a bar to understand." (Kenneth E Boulding, "Economic Analysis", 1941)

"One expects a mathematical theorem or a mathematical theory not only to describe and to classify in a simple and elegant way numerous and a priori disparate special cases. One also expects ‘elegance’ in its ‘architectural’ structural makeup." (John von Neumann, "The Mathematician" [in "Works of the Mind" Vol. I (1), 1947])

"As an Art, Mathematics has its own standard of beauty and elegance which can vie with the more decorative arts. In this it is diametrically opposed to a Baroque art which relies on a wealth of ornamental additions. Bereft of superfluous addenda, Mathematics may appear, on first acquaintance, austere and severe. But longer contemplation reveals the classic attributes of simplicity relative to its significance and depth of meaning." (Dudley E Littlewood,"The Skeleton Key of Mathematics", 1949)

On Elegance (-1899)

"The mathematician is perfect only in so far as he is a perfect man, in so far as he senses in himself the beauty of truth; only then will his work be thorough, transparent, prudent, pure, clear, graceful, indeed elegant." (Plato, "Republic", cca. 375 BC)

"The nature, mother of the eternal diversities, or the divine spirit, are zaelous of her variety by accepting one and only one pattern for all things, By these reasons she has invented this elegant and admirable proceeding. This wonder of Analysis, prodigy of the universe of ideas, a kind of hermaphrodite between existence and non-existence, which we have named imaginary root?" (Gottfried W Leibniz, "De Bisectione Latereum", 1675)

"The problem of distinguishing prime numbers from composite numbers and of resolving the latter into their prime factors is known to be one of the most important and useful in arithmetic. […] The dignity of the science itself seems to require that every possible means be explored for the solution of a problem so elegant and so celebrated." (Carl F Gauss, "Disquisitiones Arithmeticae" ["Arithmetical Researches"], 1801)

"The Combinatorial Analysis is a branch of mathematics which teaches us to ascertain and exhibit all the possible ways in which a given number of things may be associated and mixed together; so that we may be certain that we have not missed any collection or arrangement of these things, that has not been enumerated. [...] Besides its uses in mathematical investigations, it not only enables us to form our ideas of the elegant compositions of design, but to contemplate the prodigious variety which constitutes the beauties of nature, and which arises from the combinations of objects, by their number, forms, color, and positions. It has a relation to every species of useful knowledge upon which the mind of man can be employed." (Peter Nicholson, "Essays on the Combinatorial Analysis", 1818)

"The framing of hypotheses is, for the enquirer after truth, not the end, but the beginning of his work. Each of his systems is invented, not that he may admire it and follow it into all its consistent consequences, but that he may make it the occasion of a course of active experiment and observation. And if the results of this process contradict his fundamental assumptions, however ingenious, however symmetrical, however elegant his system may be, he rejects it without hesitation. He allows no natural yearning for the offspring of his own mind to draw him aside from the higher duty of loyalty to his sovereign, Truth, to her he not only gives his affections and his wishes, but strenuous labour and scrupulous minuteness of attention." (William Whewell, "Philosophy of the Inductive Sciences" Vol. 2, 1847)

"Generality of points of view and of methods, precision and elegance in presentation, have become, since Lagrange, the common property of all who would lay claim to the rank of scientific mathematicians. And, even if this generality leads at times to abstruseness at the expense of intuition and applicability, so that general theorems are formulated which fail to apply to a single special case, if furthermore precision at times degenerates into a studied brevity which makes it more difficult to read an article than it was to write it; if, finally, elegance of form has well-nigh become in our day the criterion of the worth or worthlessness of a proposition, - yet are these conditions of the highest importance to a wholesome development, in that they keep the scientific material within the limits which are necessary both intrinsically and extrinsically if mathematics is not to spend itself in trivialities or smother in profusion." (Hermann Hankel, "Theorie der Complexen Zahlensysteme", 1867)

"Logic should no longer be considered an elegant and learned accomplishment; it should take its place as an indispensable study for every well-informed person." (William S Jevons, "Elementary Lessons on Logic", 1870)

"When the formulas admit of intelligible interpretation, they are accessions to knowledge; but independently of their interpretation they are invaluable as symbolical expressions of thought. But the most noted instance is the symbol called the impossible or imaginary, known also as the square root of minus one, and which, from a shadow of meaning attached to it, may be more definitely distinguished as the symbol of semi-inversion. This symbol is restricted to a precise signification as the representative of perpendicularity in quaternions, and this wonderful algebra of space is intimately dependent upon the special use of the symbol for its symmetry, elegance, and power." (Benjamin Peirce, "On the Uses and Transformations of Linear Algebra", 1875)

"In the Theory of Numbers it happens rather frequently that, by some unexpected luck, the most elegant new truths spring up by induction." (Carl Friedrich Gauss, Werke, 1876)

"We endeavour to employ only symmetrical figures, such as should not only be an aid to reasoning, through the sense of sight, but should also be to some extent elegant in themselves." (John Venn, "Symbolic Logic", 1881)

"Mathematicians will do well to observe that a reasonable acquaintance with theoretical physics at its present stage of development, to mention only such broad subjects as electricity, elastics, hydrodynamics, etc., is as much as most of us can keep permanently assimilated. It should also be remembered that the step from the formal elegance of theory to the brute arithmetic of the special case is always humiliating, and that this labor usually falls to the lot of the physicist." (Carl Barus, "The Mathematical Theory of the Top", 1898)

Related Posts Plugin for WordPress, Blogger...

On Leonhard Euler

"I have been able to solve a few problems of mathematical physics on which the greatest mathematicians since Euler have struggled in va...