Showing posts with label design. Show all posts
Showing posts with label design. Show all posts

03 April 2021

On Technology IV

"If you think technology can solve your security problems, then you don't understand the problems and you don't understand the technology." (Bruce Schneier, "Secrets and Lies: Digital Security in a Networked World", 2000)

"Ultimately, progress in applications is not deterministic, but opportunistic, exploiting for new applications whatever new science and technology happen to be coming along." (Herbert Kroemer, "Quasi-Electric Fields and Band Offsets: Teaching Electrons New Tricks", [Nobel Lecture], 2000)

"Technology can relieve the symptoms of a problem without affecting the underlying causes. Faith in technology as the ultimate solution to all problems can thus divert our attention from the most fundamental problem - the problem of growth in a finite system - and prevent us from taking effective action to solve it." (Donella H Meadows & Dennis L Meadows, "The Limits to Growth: The 30 Year Update", 2004)

"Although the Singularity has many faces, its most important implication is this: our technology will match and then vastly exceed the refinement and suppleness of what we regard as the best of human traits."  (Ray Kurzweil, "The Singularity is Near", 2005)

"The Singularity will represent the culmination of the merger of our biological thinking and existence with our technology, resulting in a world that is still human but that transcends our biological roots. There will be no distinction, post-Singularity, between human and machine or between physical and virtual reality. If you wonder what will remain unequivocally human in such a world, it’s simply this quality: ours is the species that inherently seeks to extend its physical and mental reach beyond current limitations." (Ray Kurzweil, "The Singularity is Near", 2005)

"Chance is just as real as causation; both are modes of becoming.  The way to model a random process is to enrich the mathematical theory of probability with a model of a random mechanism. In the sciences, probabilities are never made up or 'elicited' by observing the choices people make, or the bets they are willing to place.  The reason is that, in science and technology, interpreted probability exactifies objective chance, not gut feeling or intuition. No randomness, no probability." (Mario Bunge, "Chasing Reality: Strife over Realism", 2006)

"Synergy occurs when organizational parts interact to produce a joint effect that is greater than the sum of the parts acting alone. As a result the organization may attain a special advantage with respect to cost, market power, technology, or employee." (Richard L Daft, "The Leadership Experience" 4th Ed., 2008)

"What’s next for technology and design? A lot less thinking about technology for technology’s sake, and a lot more thinking about design. Art humanizes technology and makes it understandable. Design is needed to make sense of information overload. It is why art and design will rise in importance during this century as we try to make sense of all the possibilities that digital technology now affords." (John Maeda, "Why Apple Leads the Way in Design", 2010) 

"Today, technology has lowered the barrier for others to share their opinion about what we should be focusing on. It is not just information overload; it is opinion overload." (Greg McKeown, "Essentialism: The Disciplined Pursuit of Less", 2014)

"For a successful technology, reality must take precedence over public relations, for nature cannot be fooled." (Richard Feynman)

17 February 2021

On Structure: Structure in Mathematics (1990-1999)

"[…] mathematics is not just an austere, logical structure of forbidding purity, but also a vital, vibrant instrument for understanding the world, including the workings of our minds, and this aspect of mathematics was all but lost." (Mark Kac,  "Mathematics: Tensions", 1992)

"Mathematicians apparently don’t generally rely on the formal rules of deduction as they are thinking. Rather, they hold a fair bit of logical structure of a proof in their heads, breaking proofs into intermediate results so that they don’t have to hold too much logic at once. In fact, it is common for excellent mathematicians not even to know the standard formal usage of quantifiers (for all and there exists), yet all mathematicians certainly perform the reasoning that they encode." (William P Thurston, "On Proof and Progress in Mathematics", 1994)

"The bottom line for mathematicians is that the architecture has to be right. In all the mathematics that I did, the essential point was to find the right architecture. It's like building a bridge. Once the main lines of the structure are right, then the details miraculously fit. The problem is the overall design." (Freeman J Dyson, [interview] 1994)

"The entrepreneur's instinct is to exploit the natural world. The engineer's instinct is to change it. The scientist's instinct is to try to understand it - to work out what's really going on. The mathematician's instinct is to structure that process of understanding by seeking generalities that cut across the obvious subdivisions." (Ian Stewart, "Nature's Numbers", 1995)

"Prime numbers are the most basic objects in mathematics. They also are among the most mysterious, for after centuries of study, the structure of the set of prime numbers is still not well understood […]" (Andrew Granville, 1997)

"Mathematics is a product - a discovery - of the human mind. It enables us to see the incredible, simple, elegant, beautiful, ordered structure that lies beneath the universe we live in. It is one of the greatest creations of mankind - if it is not indeed the greatest." (Keith Devlin, "Life By the Numbers", 1998)

"To some extent the beauty of number theory seems to be related to the contradiction between the simplicity of the integers and the complicated structure of the primes, their building blocks. This has always attracted people." (Andreas Knauf, "Number Theory, Dynamical Systems and Statistical Mechanics", 1998)

10 February 2021

On Complex Numbers XIX (Euler's Formula II)

"The equation e^πi+1 = 0 is true only by virtue of a large number of profound connections across many fields. It is true because of what it means! And it means what it means because of all those metaphors and blends in the conceptual system of a mathematician who understands what it means. To show why such an equation is true for conceptual reasons is to give what we have called an idea analysis of the equation." (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being", 2000)

"The equation e^πi =-1 says that the function w= e^z, when applied to the complex number πi as input, yields the real number -1 as the output, the value of w. In the complex plane, πi is the point [0,π) - π on the i-axis. The function w=e^z maps that point, which is in the z-plane, onto the point (-1, 0) - that is, -1 on the x-axis-in the w-plane. […] But its meaning is not given by the values computed for the function w=e^z. Its meaning is conceptual, not numerical. The importance of  e^πi =-1 lies in what it tells us about how various branches of mathematics are related to one another - how algebra is related to geometry, geometry to trigonometry, calculus to trigonometry, and how the arithmetic of complex numbers relates to all of them." (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being", 2000)

"The significance of e^πi+1 = 0 is thus a conceptual significance. What is important is not just the numerical values of e, π, i, 1, and 0 but their conceptual meaning. After all, e, π, i, 1, and 0 are not just numbers like any other numbers. Unlike, say, 192,563,947.9853294867, these numbers have conceptual meanings in a system of common, important nonmathematical concepts, like change, acceleration, recurrence, and self-regulation.

They are not mere numbers; they are the arithmetizations of concepts. When they are placed in a formula, the formula incorporates the ideas the function expresses as well as the set of pairs of complex numbers it mathematically determines by virtue of those ideas." (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being", 2000)

"We will now turn to e^πi+1 = 0. Our approach will be there as it was here. e^πi+1 = 0 uses the conceptual structure of all the cases we have discussed so far - trigonometry, the exponentials, and the complex numbers. Moreover, it puts together all that conceptual structure. In other words, all those metaphors and blends are simultaneously activated and jointly give rise to inferences that they would not give rise to separately. Our job is to see how e^πi+1 = 0 is a precise consequence that arises when the conceptual structure of these three domains is combined to form a single conceptual blend." (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being", 2000)

"[…] the equation’s five seemingly unrelated numbers (e, i, π, 1, and 0) fit neatly together in the formula like contiguous puzzle pieces. One might think that a cosmic carpenter had jig-sawed them one day and mischievously left them conjoined on Euler’s desk as a tantalizing hint of the unfathomable connectedness of things.[…] when the three enigmatic numbers are combined in this form, e^iπ, they react together to carve out a wormhole that spirals through the infinite depths of number space to emerge smack dab in the heartland of integers." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"Thus, while feelings may be the essence of subjectivity, they are by no means part of our weaker nature - the valences they automatically generate are integral to our thought processes and without them we’d simply be lost. In particular, we’d have no sense of beauty at all, much less be able to feel (there’s that word again) that we’re in the presence of beauty when contemplating a work such as Euler’s formula. After all, e^iπ + 1 = 0 can give people limbic-triggered goosebumps when they first peer with understanding into its depths." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"Today, Euler’s formula is a tool as basic to electrical engineers and physicists as the spatula is to short-order cooks. It’s arguable that the formula’s ability to simplify the design and analysis of circuits contributed to the accelerating pace of electrical innovation during the twentieth century." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"[…] when the three enigmatic numbers are combined in this form, e^iπ, they react together to carve out a wormhole that spirals through the infinite depths of number space to emerge smack dab in the heartland of integers." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"Euler’s formula - although deceptively simple - is actually staggeringly conceptually difficult to apprehend in its full glory, which is why so many mathematicians and scientists have failed to see its extraordinary scope, range, and ontology, so powerful and extensive as to render it the master equation of existence, from which the whole of mathematics and science can be derived, including general relativity, quantum mechanics, thermodynamics, electromagnetism and the strong and weak nuclear forces! It’s not called the God Equation for nothing. It is much more mysterious than any theistic God ever proposed." (Thomas Stark, "God Is Mathematics: The Proofs of the Eternal Existence of Mathematics", 2018)

09 February 2021

Alan M MacEachren - Collected Quotes

"Cartography is about representation. This statement may seem obvious, but it has been overlooked in our search for organizing principles for the field. Rather than restricting research in cartography to maps that present well-defined messages (and suggesting a single, map-engineering approach to improving the transmission of these messages, as the communication approach did), attention to maps as spatial representation expands the field." (Alan M MacEachren, "How Maps Work: Representation, Visualization, and Design", 1995)

"Exploring maps as representation forges important links between cartography and a variety of cognate fields concerned with this topic in its various facets (including geographical information systems [GIs] and remote sensing, as well as art, cognitive science, sociology, cognitive and environmental psychology, semiotics, and even the history and philosophy of science)." (Alan M MacEachren, "How Maps Work: Representation, Visualization, and Design", 1995)

"It may be that the human brain not only perceives but stores the essentials of a visual scene using the same geometrical, quasi-symbolic, minimalist vocabulary found in maps." (Alan M MacEachren, "How Maps Work: Representation, Visualization, and Design", 1995)

"Maps, due to their melding of scientific and artistic approaches, always involve complex interaction between the denotative and the connotative meanings of signs they contain." (Alan M MacEachren, "How Maps Work: Representation, Visualization, and Design", 1995)

"The fact that map is a fuzzy and radial, rather than a precisely defined, category is important because what a viewer interprets a display to be will influence her expectations about the display and how she interacts with it." (Alan M MacEachren, "How Maps Work: Representation, Visualization, and Design", 1995)

"The representational nature of maps, however, is often ignored - what we see when looking at a map is not the word, but an abstract representation that we find convenient to use in place of the world. When we build these abstract representations we are not revealing knowledge as much as are creating it." (Alan M MacEachren, "How Maps Work: Representation, Visualization, and Design", 1995)

"To make maps that work, we must depict categories using methods that match the structures of human mental categorization." (Alan M MacEachren, "How Maps Work: Representation, Visualization, and Design", 1995)

"Understanding how maps work and why maps work (or do not work) as representations in their own right and as prompts to further representations, and what it means for a map to work, are critical issues as we embark on a visual information age." (Alan M MacEachren, "How Maps Work: Representation, Visualization, and Design", 1995)

"When visualization tools act as a catalyst to early visual thinking about a relatively unexplored problem, neither the semantics nor the pragmatics of map signs is a dominant factor. On the other hand, syntactics (or how the sign-vehicles, through variation in the visual variables used to construct them, relate logically to one another) are of critical importance." (Alan M MacEachren, "How Maps Work: Representation, Visualization, and Design", 1995)

"Cartography as a discipline has a significant stake in the evolving role of maps within systems for scientific visualization, within spatial decision support systems, within hypermedia information access systems, and within virtual reality environments." (Alan M MacEachren, "Exploratory cartographic visualization: advancing the agenda", 1997)

"The nature of maps and of their use in science and society is in the midst of remarkable change - change that is stimulated by a combination of new scientific and societal needs for geo-referenced information and rapidly evolving technologies that can provide that information in innovative ways. A key issue at the heart of this change is the concept of ‘visualization’." (Alan M MacEachren, "Exploratory cartographic visualization: advancing the agenda", 1997)

"Maps have been a successful form of representation for centuries by making the world understandable through systematic abstraction that retains the iconicity of space depicting space. Advances in methods and technologies are blurring the lines among maps and other forms of visual representation and pushing the bounds of 'map' as a concept toward both more realistic and more abstract depiction. As a result, there are a variety of unanswered questions about the attributes and implications of 'maps'." (Alan M MacEachren, "Research Challenges in Geovisualization", 2001)

02 December 2020

On Engineering VII (Systems Engineering II)

"The term 'systems engineering' is a term with an air of romance and of mystery. The romance and the mystery come from its use in the field of guided missiles, rockets, artificial satellites, and space flight. Much of the work being done in these areas is classified and hence much of it is not known to the general public or to this writer. […] From a business point of view, systems engineering is the creation of a deliberate combination of human services, material services, and machine service to accomplish an information processing job. But this is also very nearly a definition of business system analysis. The difference, from a business point of view, therefore, between business system analysis and systems engineering is only one of degree. In general, systems engineering is more total and more goal-oriented in its approach [...]." ("Computers and People" Vol. 5, 1956)

"By some definitions 'systems engineering' is suggested to be a new discovery. Actually it is a common engineering approach which has taken on a new and important meaning because of the greater complexity and scope of problems to be solved in industry, business, and the military. Newly discovered scientific phenomena, new machines and equipment, greater speed of communications, increased production capacity, the demand for control over ever-extending areas under constantly changing conditions, and the resultant complex interactions, all have created a tremendously accelerating need for improved systems engineering. Systems engineering can be complex, but is simply defined as 'logical engineering within physical, economic and technical limits'  - bridging the gap from fundamental laws to a practical operating system." (Instrumentation Technology, 1957)

"Systems engineering embraces every scientific and technical concept known, including economics, management, operations, maintenance, etc. It is the job of integrating an entire problem or problem to arrive at one overall answer, and the breaking down of this answer into defined units which are selected to function compatibly to achieve the specified objectives. [...] Instrument and control engineering is but one aspect of systems engineering - a vitally important and highly publicized aspect, because the ability to create automatic controls within overall systems has made it possible to achieve objectives never before attainable, While automatic controls are vital to systems which are to be controlled, every aspect of a system is essential. Systems engineering is unbiased, it demands only what is logically required. Control engineers have been the leaders in pulling together a systems approach in the various technologies." (Instrumentation Technology, 1957) 

"Systems engineering is more likely to be closely associated with top management of an enterprise than the engineering of the components of the system. If an engineering task is large and complex enough, the arrangement-making problem is especially difficult. Commonly, in a large job, the first and foremost problem for the systems engineers is to relate the objectives to the technical art. [...] Systems engineering is a highly technical pursuit and if a nontechnical man attempts to direct the systems engineering as such, it must end up in a waste of technical talent below." (Aeronautical Engineering Review Vol. 16, 1957) 

"Systems engineering is the name given to engineering activity which considers the overall behavior of a system, or more generally which considers all factors bearing on a problem, and the systems approach to control engineering problems is correspondingly that approach which examines the total dynamic behavior of an integrated system. It is concerned more with quality of performance than with sizes, capacities, or efficiencies, although in the most general sense systems engineering is concerned with overall, comprehensive appraisal." (Ernest F Johnson, "Automatic process control", 1958)

"There are two types of systems engineering - basis and applied. [...] Systems engineering is, obviously, the engineering of a system. It usually, but not always, includes dynamic analysis, mathematical models, simulation, linear programming, data logging, computing, optimating, etc., etc. It connotes an optimum method, realized by modern engineering techniques. Basic systems engineering includes not only the control system but also all equipment within the system, including all host equipment for the control system. Applications engineering is - and always has been - all the engineering required to apply the hardware of a hardware manufacturer to the needs of the customer. Such applications engineering may include, and always has included where needed, dynamic analysis, mathematical models, simulation, linear programming, data logging, computing, and any technique needed to meet the end purpose - the fitting of an existing line of production hardware to a customer's needs. This is applied systems engineering." (Instruments and Control Systems Vol. 31, 1958)

"Systems Engineering Methods is directed towards the development of a broad systems engineering approach to help such people improve their decision-making capability. Although the emphasis is on engineering, the systems approach can also has validity for many other areas in which emphasis may be social, economic, or political." (Harold Chestnut, "Systems Engineering Methods", 1965) 

"Systems Engineering is the science of designing complex systems in their totality to ensure that the component sub-systems making up the system are designed, fitted together, checked and operated in the most efficient way." (Gwilym Jenkins, "The Systems Approach", 1969) 

"System engineering is a robust approach to the design, creation, and operation of systems. In simple terms, the approach consists of identification and quantification of system goals, creation of alternative system design concepts, performance of design trades, selection and implementation of the best design, verification that the design is properly built and integrated, and post-implementation assessment of how well the system meets (or met) the goals." (NASA, "NASA Systems Engineering Handbook", 1995) 

"Systems engineering should be, first and foremost, a state of mind and an attitude taken when dealing with complexity." (Dominique Luzeaux et al, "Complex Systems and Systems of Systems Engineering", 2013) 

John Venn - Collected Quotes

"Probability has been very much abandoned to mathematicians, who as mathematicians have generally been unwilling to treat it thoroughly." (John Venn, "The Logic of Chance", 1866)

"[...] for merely theoretical purposes the rule of formation would be very simple. It would merely be to begin by drawing any closed figure, and then proceed [sic] to draw others, subject to the one condition that each is to intersect once and once only all the existing subdivisions produced by those which had gone before." (John Venn, "On the Diagrammatic and Mechanical Representation of Propositions and Reasonings", 1880)

"[…] it must be noticed that these diagrams do not naturally harmonize with the propositions of ordinary life or ordinary logic. […] The great bulk of the propositions which we commonly meet with are founded, and rightly founded, on an imperfect knowledge of the actual mutual relations of the implied classes to one another. […] one very marked characteristic about these circular diagrams is that they forbid the natural expression of such uncertainty, and are therefore only directly applicable to a very small number of such propositions as we commonly meet with." (John Venn, "On the Diagrammatic and Mechanical Representation of Propositions and Reasonings", 1880)

"[...] we can not readily break up a complicated problem into successive steps which can be taken independently. We have, in fact, to solve the problem first, by determining what are the actual mutual relations of the classes involved, and then to draw the circles to represent this final result; we cannot work step-by-step towards the conclusion by aid of our figures." (John Venn, "On the Diagrammatic and Mechanical Representation of Propositions and Reasonings", 1880)

"Whereas the Eulerian plan endeavoured at once and directly to represent propositions, or relations of class terms to one another, we shall find it best to begin by representing only classes, and then proceed to modify these in some way so as to make them indicate what our propositions have to say. How, then, shall we represent all the subclasses which two or more class terms can produce? Bear in mind that what we have to indicate is the successive duplication of the number of subdivisions produced by the introduction of each successive term. and we shall see our way to a very important departure from the Eulerian conception. All that we have to do is to draw our figures, say circles, so that each successive one which we introduce shall intersect once, and once only, all the subdivisions already existing, and we then have what may be called a general framework indicating every possible combination producible by the given class terms." (John Venn, "On the Diagrammatic and Mechanical Representation of Propositions and Reasonings", 1880)

"It will be found that there is a tendency for the resultant outlines thus successively drawn to assume a comb-like shape after the first four or five [...]The fifth-term figure will have two teeth, the sixth four, and so on. [...] There is no trouble in drawing such a diagram for any number of terms which our paper will find room for. But, as has already been repeatedly remarked, the visual aid for which mainly such diagrams exist is soon lost on such a path."  (John Venn, "Symbolic Logic", [footnote], 1881)

"There is no need here to exhibit such figures, as they would probably be distasteful to any but the mathematician, and he would see his way to drawing them readily enough for himself [...]" (John Venn, "Symbolic Logic", 1881)

"We endeavour to employ only symmetrical figures, such as should not only be an aid to reasoning, through the sense of sight, but should also be to some extent elegant in themselves." (John Venn, "Symbolic Logic", 1881)

"We must say that the complete results of the elimination of any term from a given equation are obtained by breaking it up into a series of independent denials, and then selecting from amongst these all which either do not involve the term in question, or which by grouping together can be made not to involve it. […] So understood, the rule for elimination in Logic seems complete." (John Venn, "Symbolic Logic", 1881)

"Without consummate mathematical skill, on the part of some investigators at any rate, all the higher physical problems would be sealed to us; and without competent skill on the part of the ordinary student no idea can be formed of the nature and cogency of the evidence on which the solution rest. Mathematics are not merely a gate through which we may approach if we please, but they are the only mode of approach to large and important districts of thought." (John Venn, "Symbolic Logic", 1881)

"Boole's work is not so much an attempt (as used to be commonly said) to 'reduce logic to mathematics', as the employment of symbolic language and notation in a wide generalisation of purely logical processes. His fundamental process is really that of continued dichotomy, or subdivision, in respect of all the class terms which enter into the system of propositions in question. [...] This process in its priori form furnishes us with a complete set of possibilities, which, however, the conditions involved in the statement of the assigned propositions necessary necessarily?) reduce to a limited number of actualities: Boole's system being essentially one for displaying the solution of the problem in the form of a complete enumeration of these actualities." (John Venn, [in "Dictionary of National Biography"], 1886)

"If we start with the assumption, grounded on experience, that there is uniformity in this average, and so long as this is secured to us, we can afford to be perfectly indifferent to the fate, as regards causation, of the individuals which compose the average. (John Venn, "The Logic of Chance: An Essay on the Foundation and Province of the - Theory of Probability, Chance, Causation, and Design", 1887)

"In studying Nature, in any form, we are continually coming into possession of information which we sum up in general propositions. Now in very many cases these general propositions are neither more nor less certain and accurate than the details which they embrace and of which they are composed." (John Venn, "The Logic of Chance: An Essay on the Foundation and Province of the - Theory of Probability, Chance, Causation, and Design", 1887)

"How can a single introduction of our own [average], and that a fictitious one, possibly take the place of the many values which were actually given to us? And the answer surely is, that it can not possibly do so; the one thing cannot take the place of the other for purposes in general, but only for this or that specific purpose." (John Venn, “On the Nature and uses of Averages”, Journal of the Royal Statistical Society Vol. 54, 1891) 

"At the basis of our Symbolic Logic, however represented, whether by words by letters or by diagrams, we shall always find the same state of things. What we ultimately have to do is to break up the entire field before us into a definite number of classes or compartments which are mutually exclusive and collectively exhaustive." (John Venn, "Symbolic Logic" 2nd Ed., 1894)

"The best way of introducing this question will be to enquire a little more strictly whether it is really classes that we thus represent, or merely compartments into which classes may be put? […] The most accurate answer is that our diagrammatic subdivisions, or for that matter our symbols generally, stand for compartments and not for classes. We may doubtless regard them as representing the latter, but if we do so we should never fail to keep in mind the proviso, 'if there be such things in existence'. And when this condition is insisted upon, it seems as if we expressed our meaning best by saying that what our symbols stand for are compartments which may or may not happen to be occupied." (John Venn, "Symbolic Logic" 2nd Ed., 1894)

"The weak point about these (Eulerian circles) consists in the fact that they only illustrate in strictness the actual relations of classes to one another, rather than the imperfect knowledge of these relations which we may possess, or wish to convey, by means of the proposition. Accordingly they will not fit in with the propositions of common logic." (John Venn)

On Engineering VI

"Can one think that because we are engineers, beauty does not preoccupy us or that we do not try to build beautiful, as well as solid and long lasting structures? Aren’t the genuine functions of strength always in keeping with unwritten conditions of harmony? [...] Besides, there is an attraction, a special charm in the colossal to which ordinary theories of art do not apply." (Gustave Eiffel, [interview in 'Le Temps'] 1887)

"The characteristic feature of our age results from the wedding of science and engineering. It is the working together of disciplined curiosity and purposeful ingenuity to create new materials, new forces, and new opportunities which powerfully affect our manner of living and ways of thinking." (Karl T Compton, "A Scientist Speaks: Excerpts from Addresses by Karl Taylor Compton - During the Years 1930-1949", 1955)

"[An engineer's] invention causes things to come into existence from ideas, makes world conform to thought; whereas science, by deriving ideas from observation, makes thought conform to existence." (Carl Mitcham, "Types of Technology", Research in Philosophy & Technology Vol. 1, 1978)

"Engineers use knowledge primarily to design, produce, and operate artifacts. [...] Scientists, by contrast, use knowledge primarily to generate more knowledge." (Walter Vincenti, What Engineers Know and How They Know It, 1990)

"Engineering is quite different from science. Scientists try to understand nature. Engineers try to make things that do not exist in nature. Engineers stress invention. To embody an invention the engineer must put his idea in concrete terms, and design something that people can use. That something can be a device, a gadget, a material, a method, a computing program, an innovative experiment, a new solution to a problem, or an improvement on what is existing. Since a design has to be concrete, it must have its geometry, dimensions, and characteristic numbers. Almost all engineers working on new designs find that they do not have all the needed information. Most often, they are limited by insufficient scientific knowledge. Thus they study mathematics, physics, chemistry, biology and mechanics. Often they have to add to the sciences relevant to their profession. Thus engineering sciences are born." (Yuan-Cheng Fung & Pin Tong, "Classical and Computational Solid Mechanics", 2001)

"Engineering isn't about perfect solutions; it's about doing the best you can with limited resources." (Randy Pausch, "The Last Lecture", 2008)

"The central activity of engineering, as distinguished from science, is the design of new devices, processes and systems." (Myron Tribus, "Rational Descriptions, Decisions and Designs", 2016)

"Engineering is a living branch of human activity and its frontiers are by no means exhausted." (Igor I Sikorsky)

"Engineering is not merely knowing and being knowledgeable, like a walking encyclopedia; engineering is not merely analysis; engineering is not merely the possession of the capacity to get elegant solutions to non-existent engineering problems; engineering is practicing the art of the organizing forces of technological change. [...] Engineers operate at the interface between science and society." (Gordon S Brown)

"The scientist describes what is; the engineer creates what never was." (Theodore von Kármán)

On Engineering IV

"The engineer must be able not only to design, but to execute. A draftsman may be able to design, but unless he is able to execute his designs to successful operation he cannot be classed as an engineer. The production engineer must be able to execute his work as he has planned it. This requires two qualifications in addition to technical engineering ability: He must know men, and he must have creative ability in applying good statistical, accounting, and 'system' methods to any particular production work he may undertake." (Hugo Diemer, "Industrial Engineering", 1905)

"An engineering science aims to organize the design principles used in engineering practice into a discipline and thus to exhibit the similarities between different areas of engineering practice and to emphasize the power of fundamental concepts. In short, an engineering science is predominated by theoretical analysis and very often uses the tool of advanced mathematics." (Qian Xuesen, "Engineering cybernetics", 1954)

"Engineering is a profession, an art of action and synthesis and not simply a body of knowledge. Its highest calling is to invent and innovate." (Hardy Cross, "Education for Innovation", 1968)

"A good scientist is a person with original ideas. A good engineer is a person who makes a design that works with as few original ideas as possible. There are no prima donnas in engineering." (Freeman J Dyson, "Disturbing the Universe", 1979)

"Engineering, like poetry, is an attempt to approach perfection. And engineers, like poets, are seldom completely satisfied with their creations. They notice, even if no one else does, the word that is not quite 'le mot juste' or the hairline crack that blemishes the structure." (Henry Petroski, "To Engineer Is Human: The Role of Failure in Successful Design", 1985)

"All of engineering involves some creativity to cover the parts not known, and almost all of science includes some practical engineering to translate the abstractions into practice." (Richard Hamming, "The Art of Doing Science and Engineering: Learning to Learn", 1991)

"Engineering is the application of scientific principles toward practical ends. If the engineering isn't practical, it's bad engineering." (Steve McConnell, "After the Gold Rush: Creating a True Profession of Software Engineering", 1999)

"All feats of engineering, whether stone dwellings or space stations, require a particular sequence of events. First, the engineer must understand the needs and wants of the society or subgroup of society that is to be served. Second, the engineer must formulate concepts of potential designs that might serve the designated needs and wants. Third, the engineer must analyze the concepts to determine their functionality. Fourth, the engineer must optimize selected candidate designs and choose a single preferred design. And fifth, the engineer must design a production system to realize the selected design." (George A Hazelrigg, "Laws and Models: An Introduction", 2000)

"Indeed, the most important part of engineering work - and also of other scientific work - is the determination of the method of attacking the problem, whatever it may be." (Charles P Steinmetz)

"Designers need to be part engineer. Good design only exists in concert with engineering. That is because form has to follow function, so you focus on function and then give the object a shape to make it appealing." (Ferdinand A Porsche)

01 December 2020

On Engineering III

"[...] without imagination, heightened awareness, moral sense, and some reference to the general culture, the engineering experience becomes less meaningful, less fulfilling than it should be." (Samuel C Florman, "The Civilized Engineer", 1985)

"Science can amuse and fascinate us all, but it is engineering that changes the world." (Isaac Asimov, "Isaac Asimov’s Book of Science and Nature Quotations", 1988)

"Engineering knowledge reflects the fact that design does not take place for its own sake and in isolation." (Walter G Vincenti, "What Engineers Know and How They Know It", 1990)

"All of engineering involves some creativity to cover the parts not known, and almost all of science includes some practical engineering to translate the abstractions into practice." (Richard W Hamming, "The Art of Probability for Scientists and Engineers", 1991)

"No matter how vigorously a 'science' of design may be pushed, the successful design of real things in a contingent world will always be based more on art than on science. Unquantifiable judgments and choices are the elements that determine the way a design comes together. Engineering design is simply that kind of process. It always has been; it always will be. (Eugene S Ferguson , "Engineering and the Mind’s Eye", 1992)

"Good engineering is not a matter of creativity or centering or grounding or inspiration or lateral thinking, as useful as those might be, but of decoding the clever, even witty, messages the solution space carves on the corpses of the ideas in which you believed with all your heart, and then building the road to the next message." (Fred Hapgood, "Up the infinite Corridor: MIT and the Technical Imagination", 1993)

"Engineering isn't about perfect solutions; it's about doing the best you can with limited resources." (Randy Pausch, "The Last Lecture", 2008)

"Engineering is the art or science of utilizing, directing or instructing others in the utilization of the principles, forces, properties and substances of nature in the production, manufacture, construction, operation and use of things [...] or of means, methods, machines, devices and structures [...]"  (Alfred W Kiddle)

"The essence of engineering consists not so much in the mere construction of the spectacular layouts or developments, but in the invention required - the analysis of the problem, the design, the solution by the mind which directs it all." (William Hood)

On Engineering II

"Engineering is knowledge work. That is, although the goal of engineering may be to produce useful objects, engineers do not construct such object themselves. Rather they aim to generate knowledge that will allow such objects to be built." (Dorothy A Winsor, "Writing Like an Engineer: A Rhetorical Education", 1966)

"Engineering is a profession, an art of action and synthesis and not simply a body of knowledge. Its highest calling is to invent and innovate." (Daniel V DeSimone & Hardy Cross, "Education for Innovation", 1968)

"Technological invention and innovation are the business of engineering. They are embodied in engineering change." (Daniel V DeSimone & Hardy Cross, "Education for Innovation", 1968)

"[...] it is rather more difficult to recapture directness and simplicity than to advance in the direction of ever more sophistication and complexity. Any third-rate engineer or researcher can increase complexity; but it takes a certain flair of real insight to make things simple again." (Ernst F Schumacher, "Small Is Beautiful", 1973)

"Engineering is superficial only to those who view it superficially. At the heart of engineering lies existential joy." (Samuel C Florman, "The Existential Pleasures of Engineering", 1976)

"From the point of view of modern science, design is nothing, but from the point of view of engineering, design is everything. It represents the purposive adaptation of means to reach a preconceived end, the very essence of engineering." (Edwin T Layton Jr., "American Ideologies of Science and Engineering", Technology and Culture No. 4, 1976)

"Engineering or Technology is the making of things that did not previously exist, whereas science is the discovering of things that have long existed. Technological results are forms that exist only because people want to make them, whereas scientific results are formulations of what exists independently of human intentions." (David Billington, "The Tower and the Bridge: The New Art of Structural Engineering", 1983)

"As engineering becomes increasingly central to the shaping of society, it is ever more important that engineers become introspective. Rather than merely revel in our technical successes, we should intensify our efforts to explore, define, and improve the philosophical foundations of our professions." (Samuel C Florman, "The Civilized Engineer", 1985)

"Engineering is an art of simplification, and the rules - when and how to simplify - are a matter of experience and intuition." (Olle I Elgerd)

"Indeed, the most important part of engineering work - and also of other scientific work - is the determination of the method of attacking the problem, whatever it may be." (Charles P Steinmetz)

21 September 2020

Information Overload I

"Faced with information overload, we have no alternative but pattern-recognition."(Marshall McLuhan, "Counterblast", 1969)

"We live in and age of hyper-awareness, our senses extend around the globe, but it's the case of aesthetic overload: our technical zeal has outstripped our psychic capacity to cope with the influx of information." (Gene Youngblood, "Expanded Cinema", 1970) 

"What about confusing clutter? Information overload? Doesn't data have to be ‘boiled down’ and  ‘simplified’? These common questions miss the point, for the quantity of detail is an issue completely separate from the difficulty of reading. Clutter and confusion are failures of design, not attributes of information." (Edward R Tufte, "Envisioning Information", 1990)

"'Point of view' is that quintessentially human solution to information overload, an intuitive process of reducing things to an essential relevant and manageable minimum. [...] In a world of hyperabundant content, point of view will become the scarcest of resources." (Paul Saffo, "It's The Context, Stupid", 1994) 

"We live in a world where there is more and more information, and less and less meaning." (Jean Baudrillard, "Simulacra and simulation", 1994) 

"One of the effects of living with electric information is that we live habitually in a state of information overload. There's always more than you can cope with." (Marshall McLuhan, "Understanding Me: Lectures and Interviews" , 2003)

"What’s next for technology and design? A lot less thinking about technology for technology’s sake, and a lot more thinking about design. Art humanizes technology and makes it understandable. Design is needed to make sense of information overload. It is why art and design will rise in importance during this century as we try to make sense of all the possibilities that digital technology now affords." (John Maeda, "Why Apple Leads the Way in Design", 2010) 

"The instinctual shortcut that we take when we have 'too much information' is to engage with it selectively, picking out the parts we like and ignoring the remainder, making allies with those who have made the same choices and enemies of the rest." (Nate Silver, "The Signal and the Noise", 2012)

"Complexity has the propensity to overload systems, making the relevance of a particular piece of information not statistically significant. And when an array of mind-numbing factors is added into the equation, theory and models rarely conform to reality." (Lawrence K Samuels, "Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013)

"While having information is a crucial first step, more information isn't necessarily better. Take a look at your bookshelves and the list of seminars you have attended. If you have read more than one book about a subject or attended more than one seminar but still haven’t reached your goals, then your problem is not lack of information but rather lack of implementation." (Gudjon Bergmann) 

29 July 2020

Stephen Few - Collected Quotes

"An effective dashboard is the product not of cute gauges, meters, and traffic lights, but rather of informed design: more science than art, more simplicity than dazzle. It is, above all else, about communication." (Stephen Few, "Information Dashboard Design", 2006)

"Most dashboards fail to communicate efficiently and effectively, not because of inadequate technology (at least not primarily), but because of poorly designed implementations. No matter how great the technology, a dashboard's success as a medium of communication is a product of design, a result of a display that speaks clearly and immediately. Dashboards can tap into the tremendous power of visual perception to communicate, but only if those who implement them understand visual perception and apply that understanding through design principles and practices that are aligned with the way people see and think." (Stephen Few, "Information Dashboard Design", 2006)

"A signal is a useful message that resides in data. Data that isn’t useful is noise. […] When data is expressed visually, noise can exist not only as data that doesn’t inform but also as meaningless non-data elements of the display (e.g. irrelevant attributes, such as a third dimension of depth in bars, color variation that has no significance, and artificial light and shadow effects)." (Stephen Few, "Signal: Understanding What Matters in a World of Noise", 2015)

"Apart from the secondary benefits of digital data, which are many, such as faster and cheaper information collection and distribution, the primary benefit is better decision making based on evidence. Despite our intellectual powers, when we allow our minds to become disconnected from reliable information about the world, we tend to screw up and make bad decisions." (Stephen Few, "Signal: Understanding What Matters in a World of Noise", 2015)

"Data contain descriptions. Some are true, some are not. Some are useful, most are not. Skillful use of data requires that we learn to pick out the pieces that are true and useful. [...] To find signals in data, we must learn to reduce the noise - not just the noise that resides in the data, but also the noise that resides in us. It is nearly impossible for noisy minds to perceive anything but noise in data." (Stephen Few, "Signal: Understanding What Matters in a World of Noise", 2015)

"Signals always point to something. In this sense, a signal is not a thing but a relationship. Data becomes useful knowledge of something that matters when it builds a bridge between a question and an answer. This connection is the signal." (Stephen Few, "Signal: Understanding What Matters in a World of Noise", 2015)

"The term data, unlike the related terms facts and evidence, does not connote truth. Data is descriptive, but data can be erroneous. We tend to distinguish data from information. Data is a primitive or atomic state (as in ‘raw data’). It becomes information only when it is presented in context, in a way that informs. This progression from data to information is not the only direction in which the relationship flows, however; information can also be broken down into pieces, stripped of context, and stored as data. This is the case with most of the data that’s stored in computer systems. Data that’s collected and stored directly by machines, such as sensors, becomes information only when it’s reconnected to its context."  (Stephen Few, "Signal: Understanding What Matters in a World of Noise", 2015)

"Everything that informs us of something useful that we didn't already know is a potential signal. If it matters and deserves a response, its potential is actualized." (Stephen Few)

"One of the great purposes of education today is to help us filter the data, to reduce it to what's true and useful." (Stephen Few)

16 February 2020

Russell L Ackoff - Collected Quotes

"The extensive literature addressed to the definition or characterization of science is filled with inconsistent points of view and demonstrates that an adequate definition is not easy to attain. Part of the difficulty arises from the fact that the meaning of science is not fixed, but is dynamic. As science has evolved, so has its meaning. It takes on a new meaning and significance with successive ages." (Russell L Ackoff, "Scientific method: optimizing applied research decisions", 1962)

"The word model is used as a noun, adjective, and verb, and in each instance it has a slightly different connotation. As a noun 'model' is a representation in the sense in which an architect constructs a small-scale model of a building or a physicist a large-scale model of an atom. As an adjective 'model' implies a degree or perfection or idealization, as in reference to a model home, a model student, or a model husband. As a verb 'to model' means to demonstrate, to reveal, to show what a thing is like." (Russell L Ackoff, "Scientific method: optimizing applied research decisions", 1962)

"[The environment of a system is] a set of elements and their relevant properties, which elements are not part of the system, but a change in any of which can cause or produce a change in the state of the system." (Russell L Ackoff, "Towards a System of Systems Concepts", 1971)

"The systems approach to problems focuses on systems taken as a whole, not on their parts taken separately. Such an approach is concerned with total - system performance even when a change in only one or a few of its parts is contemplated because there are some properties of systems that can only be treated adequately from a holistic point of view. These properties derive from the relationship between parts of systems: how the parts interact and fit together." (Russell L Ackoff, "Towards a System of Systems Concepts", 1971)

"In the Systems Age we tend to look at things as part of larger wholes rather than as wholes to be taken apart. This is the doctrine of expansionism. Expansionism brings with it the synthetic mode of thought much as reductionism brought with it." (Russell L Ackoff, "Redesigning the future", 1974)

"The synthetic mode of thought, when applied to systems problems, is called the systems approach. In this approach a problem is not solved by taking it apart but by viewing it as a part of a larger problem." (Russell L Ackoff, "Redesigning the future", 1974)

"When a mess, which is a system of problems, is taken apart, it loses its essential properties and so does each of its parts. The behavior of a mess depends more on how the treatment of its parts interact than how they act independently of each other. A partial solution to a whole system of problems is better than whole solutions of each of its parts taken separately." (Russell L Ackoff, "The future of operational research is past", The Journal of the Operational Research Society Vol. 30 (2), 1979)

"A system is a set of two or more elements that satisfies the following three conditions. (1) The behavior of each element has an effect on the behavior of the whole. (2) The behavior of the elements and their effects on the whole are interdependent. the way each element behaves and the way it affects the whole depends on how at least one other element behaves. (3) However subgroups of the elements are formed, each has an effect on the behavior of the whole and none has an independent effect on it." (Russell L Ackoff, "Creating the Corporate Future", 1981)

"Knowledge is the appropriate collection of information, such that it's intent is to be useful. Knowledge is a deterministic process. When someone 'memorizes' information (as less-aspiring test-bound students often do), then they have amassed knowledge. This knowledge has useful meaning to them, but it does not provide for, in and of itself, an integration such as would infer further knowledge." (Russell L Ackoff, "Towards a Systems Theory of Organization", 1985)

"Information is data that has been given meaning by way of relational connection. This "meaning" can be useful, but does not have to be. In computer parlance, a relational database makes information from the data stored within it." (Russell L Ackoff, "Towards a Systems Theory of Organization", 1985)

"A change of world view not only brings about profound cultural changes, but also is responsible for what historians call a 'change of age'. An age is a period of time in which the prevailing world view has remained relatively unchanged." (Russell L Ackoff, "Re-Creating the Corporation", 1999)

"Analysis of a system reveals its structure and how it works. It provides the knowledge required to make it work efficiently and to repair it when it stops working. Its product is know-how, knowledge, not understanding. To enable a system to perform effectively we must understand it - we must be able to explain its behavior - and this requires being aware of its functions in the larger systems of which it is a part." (Russell L Ackoff, "Re-Creating the Corporation", 1999)

"Every culture has a shared pattern of thinking. It is the cement that holds a culture together, gives it unity. A culture's characteristic way of thinking is imbedded in its concept of the nature of reality, its world view. […] A change of world view not only brings about profound cultural changes, but also is responsible for what historians call a ‘change of age’. An age is a period of time in which the prevailing world view has remained relatively unchanged." (Russell L Ackoff, “Re-Creating the Corporation", 1999)

"The effectiveness of any model used to describe and understand behavior of a particular system as a whole ultimately depends on the degree to which that model accurately represents that system. Nevertheless, there have been and are situations in which application of deterministic or animate models to social systems have produced useful results for a short period of time. However, in a longer run, such mismatches usually result in less than desirable results because critical aspects of the social systems were omitted in the less complex model that was used." (Russell L Ackoff, 1999)

"The more the rate of change increases, the more the problems that face us change and the shorter is the life of the solutions we find to them. Therefore, by the time we find solutions to many of the problems that face us, usually the most important ones, the problems have so changed that our solutions to them are no longer relevant or effective; they are stillborn." (Russell L Ackoff)

13 January 2020

Béla H Bánáthy - Collected Quotes

"If solutions could be offered within the existing system, there would be no need to design. Thus designers have to transcend the existing system. Their task is to create a different system or devise a new one. That is why designers say they can truly define the problem only in light of the solution. The solution informs them as to what the real problem is." (Béla H Bánáthy, "Systems Design of Education", 1991)

"Systems philosophy brings forth a reorganization of ways of thinking. It creates a new worldview, a new paradigm of perception and explanation, which is manifested in integration, holistic thinking, purpose-seeking, mutual causality, and process-focused inquiry." (Béla H Bánáthy, "Systems Design of Education", 1991)

"Systems theory pursues the scientific exploration and understanding of systems that exist in the various realms of experience, in order to arrive at a general theory of systems: an organized expressing of sets of interrelated concepts and principles that apply to all systems." (Béla H Bánáthy, "Systems Design of Education", 1991)

"The vision and the core values inspire the creation of the image, but the core ideas are the "stuff" of which the image is made. The core ideas that designers generated in the course of using the framework will have to be arranged in sets that enhance the creation of the image and the design of the system."  (Béla H Bánáthy, "Systems Design of Education", 1991)

"Faced with new realities, our systems have to transform - as the society has transformed. They have to learn to co-change (co-evolve) with their constantly changing environments. Thus, it is imperative that we understand what these transformations and new realities are. We have to grasp their implications for systems, and apply our understanding of these implications to the transformation of our systems. We need to learn how to recreate our systems, how to redesign them so that they will have a goodness of fit with the emerged new realities. No small task by any means!" (Béla H Banathy, "Creating our future in an age of transformation", 1994)

"Science focuses on the study of the natural world. It seeks to describe what exists. Focusing on problem finding, it studies and describes problems in its various domains. The humanities focus on understanding and discussing the human experience. In design, we focus on finding solutions and creating things and systems of value that do not yet exist.
The methods of science include controlled experiments, classification, pattern recognition, analysis, and deduction. In the humanities we apply analogy, metaphor, criticism, and (e)valuation. In design we devise alternatives, form patterns, synthesize, use conjecture, and model solutions." (Béla H Bánáthy, "Designing Social Systems in a Changing World", 1996)

12 January 2020

Carlos Gershenson - Collected Quotes

"A self-organizing system not only regulates or adapts its behavior, it creates its own organization. In that respect it differs fundamentally from our present systems, which are created by their designer. We define organization as structure with function. Structure means that the components of a system are arranged in a particular order. It requires both connections, that integrate the parts into a whole, and separations that differentiate subsystems, so as to avoid interference. Function means that this structure fulfils a purpose." (Francis Heylighen & Carlos Gershenson, "The Meaning of Self-organization in Computing", IEEE Intelligent Systems, 2003)

"Self-organization can be seen as a spontaneous coordination of the interactions between the components of the system, so as to maximize their synergy. This requires the propagation and processing of information, as different components perceive different aspects of the situation, while their shared goal requires this information to be integrated. The resulting process is characterized by distributed cognition: different components participate in different ways to the overall gathering and processing of information, thus collectively solving the problems posed by any perceived deviation between the present situation and the desired situation." (Carlos Gershenson & Francis Heylighen, "How can we think the complex?", 2004)

"A system described as self-organizing is one in which elements interact in order to achieve dynamically a global function or behavior." (Carlos Gershenson, "A general methodology for designing self-organizing systems", 2006)

"In engineering, a self-organizing system would be one in which elements are designed to dynamically and autonomously solve a problem or perform a function at the system level. In other words, the engineer will not build a system to perform a function explicitly, but elements will be engineered in such a way that their behaviour and interactions will lead to the system function. Thus, the elements need to divide, but also to integrate, the problem." (Carlos Gershenson, "Design and Control of Self-organizing Systems", 2007)

[synergy:] "Measure describing how one agent or system increases the satisfaction of other agents or systems." (Carlos Gershenson, "Design and Control of Self-organizing Systems", 2007)

"The second law of thermodynamics states that in an isolated system, entropy can only increase, not decrease. Such systems evolve to their state of maximum entropy, or thermodynamic equilibrium. Therefore, physical self-organizing systems cannot be isolated: they require a constant input of matter or energy with low entropy, getting rid of the internally generated entropy through the output of heat (“dissipation”). This allows them to produce ‘dissipative structures’ which maintain far from thermodynamic equilibrium. Life is a clear example of order far from thermodynamic equilibrium." (Carlos Gershenson, “Design and Control of Self-organizing Systems”, 2007)

"Thermodynamics is about those properties of systems that are true independent of their mechanism. This is why there is a fundamental asymmetry in the relationship between mechanistic descriptions of systems and thermodynamic descriptions of systems. From the mechanistic information we can deduce all the thermodynamic properties of that system. However, given only thermodynamic information we can deduce nothing about mechanism. This is in spite of the fact that thermodynamics makes it possible for us to reject classes of models such as perpetual motion machines." (Carlos Gershenson, “Design and Control of Self-organizing Systems”, 2007)

"Thus, nonlinearity can be understood as the effect of a causal loop, where effects or outputs are fed back into the causes or inputs of the process. Complex systems are characterized by networks of such causal loops. In a complex, the interdependencies are such that a component A will affect a component B, but B will in general also affect A, directly or indirectly.  A single feedback loop can be positive or negative. A positive feedback will amplify any variation in A, making it grow exponentially. The result is that the tiniest, microscopic difference between initial states can grow into macroscopically observable distinctions." (Carlos Gershenson, "Design and Control of Self-organizing Systems", 2007)

"To develop a Control, the designer should find aspect systems, subsystems, or constraints that will prevent the negative interferences between elements (friction) and promote positive interferences (synergy). In other words, the designer should search for ways of minimizing frictions that will result in maximization of the global satisfaction" (Carlos Gershenson, "Design and Control of Self-organizing Systems", 2007)

"We have to be aware that even in mathematical and physical models of self-organizing systems, it is the observer who ascribes properties, aspects, states, and probabilities; and therefore entropy or order to the system. But organization is more than low entropy: it is structure that has a function or purpose."(Carlos Gershenson, “Design and Control of Self-organizing Systems”, 2007)

"We have to be aware that probabilities are relative to a level of observation, and that what is most probable at one level is not necessarily so at another. Moreover, a state is defined by an observer, being the conjunction of the values for all the variables or attributes that the observer considers relevant for the phenomenon being modeled. Therefore, we can have different degrees of order or ‘entropies’ for different models or levels of observation of the same entity."(Carlos Gershenson, “Design and Control of Self-organizing Systems”, 2007)

"Complexity carries with it a lack of predictability different to that of chaotic systems, i.e. sensitivity to initial conditions. In the case of complexity, the lack of predictability is due to relevant interactions and novel information created by them." (Carlos Gershenson, "Understanding Complex Systems", 2011)

"Complexity has shown that reductionism is limited, in the sense that emergent properties cannot be reduced. In other words, the properties at a given scale cannot be always described completely in terms of properties at a lower scale. This has led people to debate on the reality of phenomena at different scales." (Carlos Gershenson, "Complexity", 2011)

"It should also be noted that the novel information generated by interactions in complex systems limits their predictability. Without randomness, complexity implies a particular non-determinism characterized by computational irreducibility. In other words, complex phenomena cannot be known a priori." (Carlos Gershenson, "Complexity", 2011)

"The difference between adaptation and prediction is that the latter tries to act before a perturbation affects the expected behavior of a system. Certainly, it is desirable to predict perturbations, since these can affect negatively or even destroy a system. However, as it has been shown, it is not possible to predict all future interactions of a system. This is why it becomes necessary to build systems that are able to adapt, since there will be unexpected situations. An adaptive system will be able to respond to the unexpected, to a certain degree, without the need of human intervention." (Carlos Gershenson, "Understanding Complex Systems", 2011)

12 December 2019

Leonard Mlodinow - Collected Quotes

"It is one of those contradictions of life that although measurement always carries uncertainty, the uncertainty in measurement is rarely discussed." (Leonard Mlodinow, "The Drunkard’s Walk: How Randomness Rules Our Lives", 2008)

"Perception requires imagination because the data people encounter in their lives are never complete and always equivocal." (Leonard Mlodinow, "The Drunkard’s Walk: How Randomness Rules Our Lives", 2008)

"Random events often come like the raisins in a box of cereal - in groups, streaks, and clusters. And although Fortune is fair in potentialities, she is not fair in outcomes." (Leonard Mlodinow, "The Drunkard’s Walk: How Randomness Rules Our Lives", 2008)

"Regression toward the mean. That is, in any series of random events an extraordinary event is most likely to be followed, due purely to chance, by a more ordinary one." (Leonard Mlodinow, "The Drunkard’s Walk: How Randomness Rules Our Lives", 2008)

"The key to understanding randomness and all of mathematics is not being able to intuit the answer to every problem immediately but merely having the tools to figure out the answer." (Leonard Mlodinow, "The Drunkard’s Walk: How Randomness Rules Our Lives", 2008)

"The law of small numbers is not really a law. It is a sarcastic name describing the misguided attempt to apply the law of large numbers when the numbers aren't large." (Leonard Mlodinow, "The Drunkard’s Walk: How Randomness Rules Our Lives", 2008)

"The outline of our lives, like the candles flame, is continuously coaxed in new directions by a variety of random events that, along with our responses to them, determine our fate." (Leonard Mlodinow, "The Drunkard’s Walk: How Randomness Rules Our Lives", 2008)

"The theory of randomness is fundamentally a codification of common sense. But it is also a field of subtlety, a field in which great experts have been famously wrong and expert gamblers infamously correct. What it takes to understand randomness and overcome our misconceptions is both experience and a lot of careful thinking." (Leonard Mlodinow, "The Drunkard’s Walk: How Randomness Rules Our Lives", 2008)

"We also use our imagination and take shortcuts to fill gaps in patterns of nonvisual data. As with visual input, we draw conclusions and make judgments based on uncertain and incomplete information, and we conclude, when we are done analyzing the patterns, that out picture is clear and accurate. But is it?" (Leonard Mlodinow, "The Drunkard’s Walk: How Randomness Rules Our Lives", 2008)

"Why is the human need to be in control relevant to a discussion of random patterns? Because if events are random, we are not in control, and if we are in control of events, they are not random. There is therefore a fundamental clash between our need to feel we are in control and our ability to recognize randomness. That clash is one of the principal reasons we misinterpret random events."  (Leonard Mlodinow, "The Drunkard’s Walk: How Randomness Rules Our Lives", 2008)

"A model is a good model if it:1. Is elegant 2. Contains few arbitrary or adjustable elements 3. Agrees with and explains all existing observations 4. Makes detailed predictions about future observations that can disprove or falsify the model if they are not borne out." (Stephen Hawking & Leonard Mlodinow, "The Grand Design", 2010)

"With each theory or model, our concepts of reality and of the fundamental constituents of the universe have changed." (Stephen Hawking & Leonard Mlodinow, "The Grand Design", 2010)

"Our inner weighing of evidence is not a careful mathematical calculation resulting in a probabilistic estimate of truth, but more like a whirlpool blending of the objective and the personal. The result is a set of beliefs - both conscious and unconscious - that guide us in interpreting all the events of our lives." (Leonard Mlodinow, "War of the Worldviews: Where Science and Spirituality Meet - and Do Not", 2011)


"Science has revealed a universe that is vast, ancient, violent, strange, and beautiful, a universe of almost infinite variety and possibility one in which time can end in a black hole, and conscious beings can evolve from a soup of minerals." (Leonard Mlodinow, "War of the Worldviews: Where Science and Spirituality Meet - and Do Not", 2011)

01 July 2019

Stephen W Hawking - Collected Quotes

"Disorder increases with time because we measure time in the direction in which disorder increases." (Stephen W Hawking, "The Direction of Time", New Scientist 115 (1568), 1987)

"A theory is a good theory if it satisfies two requirements: it must accurately describe a large class of observations on the basis of a model that contains only a few arbitrary elements, and it must make definite predictions about the results of future observations." (Stephen W Hawking, "A Brief History of Time: From Big Bang To Black Holes", 1988)

"Any physical theory is always provisional, in the sense that it is only a hypothesis: you can never prove it. No matter how many times the results of experiments agree with some theory, you can never be sure that the next time the result will not contradict the theory." (Stephen Hawking,  "A Brief History of Time", 1988)

"Even if there is only one possible unified theory, it is just a set of rules and equations. What is it that breathes fire into the equations and makes a universe for them to describe? The usual approach of science of constructing a mathematical model cannot answer the questions of why there should be a universe for the model to describe. Why does the universe go to all the bother of existing?" (Stephen W Hawking, "A Brief History of Time: From the Big Bang to Black Holes", 1988)

"In an infinite number universe, every point can be regarded as the center, because every point has an infinite of stars on each side of it." (Stephen Hawking, "A Brief History of Time", 1988)

"In fact, all our theories of science are formulated on the assumption that space-time is smooth and nearly flat, so they break down at the big bang singularity, where the curvature of space-time is infinite." (Stephen W Hawking, "A Brief History of Time", 1988)

"Just like a computer, we must remember things in the order in which entropy increases. This makes the second law of thermodynamics almost trivial. Disorder increases with time because we measure time in the direction in which disorder increases."  (Stephen Hawking, "A Brief History of Time", 1988)

"The usual approach of science of constructing a mathematical model cannot answer the questions of why there should be a universe for the model to describe. Why does the universe go to all the bother of existing?" (Stephen Hawking, "A Brief History of Time", 1988)

"One might think this means that imaginary numbers are just a mathematical game having nothing to do with the real world. From the viewpoint of positivist philosophy, however, one cannot determine what is real. All one can do is find which mathematical models describe the universe we live in. It turns out that a mathematical model involving imaginary time predicts not only effects we have already observed but also effects we have not been able to measure yet nevertheless believe in for other reasons. So what is real and what is imaginary? Is the distinction just in our minds?" (Stephen W Hawking, "The Universe in a Nutshell", 2001)

"A model is a good model if it:1. Is elegant2. Contains few arbitrary or adjustable elements3. Agrees with and explains all existing observations4. Makes detailed predictions about future observations that can disprove or falsify the model if they are not borne out." (Stephen Hawking & Leonard Mlodinow, "The Grand Design", 2010)

"With each theory or model, our concepts of reality and of the fundamental constituents of the universe have changed." (Stephen Hawking & Leonard Mlodinow, "The Grand Design", 2010)

"[...] we and our models are both part of the universe we are describing. Thus a physical theory is self referencing, like in Gödel’s theorem. One might therefore expect it to be either inconsistent or incomplete. The theories we have so far are both inconsistent and incomplete." (Stephen Hawking, "Gödel and the End of the Universe" )

"One is always a long way from solving a problem until one actually has the answer." (Stephen Hawking)

09 December 2017

On Symmetry VII (Nature)

"Nature builds up by her refined and invisible architecture, with a delicacy eluding our conception, yet with a symmetry and beauty which we are never weary of admiring." (Sir John F W Herschel, "The Cabinet of Natural Philosophy", 1831)

"[…] the lifeless symmetry of architecture, however beautiful the design and proportion, no man would be so mad as to put in competition with the animated charms of nature." (Fanny Burney, "Evelina", 1909)

"The essential vision of reality presents us not with fugitive appearances but with felt patterns of order which have coherence and meaning for the eye and for the mind. Symmetry, balance and rhythmic sequences express characteristics of natural phenomena: the connectedness of nature - the order, the logic, the living process. Here art and science meet on common ground." (Gyorgy Kepes, "The New Landscape: In Art and Science", 1956)

"[…] nature, at the fundamental level, does not just prefer symmetry in a physical theory; nature demands it." (Jennifer T Thompson, "Beyond Einstein: The Cosmic Quest for the Theory of the Universe", 1987)

"The quantum world is in a constant process of change and transformation. On the face of it, all possible processes and transformations could take place, but nature’s symmetry principles place limits on arbitrary transformation. Only those processes that do not violate certain very fundamental symmetry principles are allowed in the natural world." (F David Peat, "From Certainty to Uncertainty", 2002)

"[…] in all things that live there are certain irregularities and deficiencies which are not only signs of life, but sources of beauty. No human face is exactly the same in its lines on each side, no leaf perfect in its lobes, no branch in its symmetry. All admit irregularity as they imply change; […]" (John Ruskin, "The Stones of Venice: The Sea Stories", 2013)

"We find, therefore, under this orderly arrangement, a wonderful symmetry in the universe, and a definite relation of harmony in the motion and magnitude of the orbs, of a kind that is not possible to obtain in any other way." (Johannes Kepler)

"Nature builds up her refined and invisible architecture, with a delicacy eluding our conception, yet with a symmetry and beauty which we are never weary of admiring." (John Herschel)

"The most general law in nature is equity-the principle of balance and symmetry which guides the growth of forms along the lines of the greatest structural efficiency." (Herbert Read)

"The secret of nature is symmetry. When searching for new and more fundamental laws of nature, we should search for new symmetries." (David Gross)

"The universe is built on a plan the profound symmetry of which is somehow present in the inner structure of our intellect." (Paul Valéry)
Related Posts Plugin for WordPress, Blogger...

On Leonhard Euler

"I have been able to solve a few problems of mathematical physics on which the greatest mathematicians since Euler have struggled in va...