Showing posts with label worldviews. Show all posts
Showing posts with label worldviews. Show all posts

18 July 2021

Out of Context: Worldview is... (Definitions)

"A Weltanschauung [worldview] is an intellectual construction which solves all the problems of our existence uniformly on the basis of one overriding hypothesis, which, accordingly, leaves no question unanswered and in which everything that interests us finds its fixed place [...]." (Sigmund Freud, "New introductory lectures on psycho-analysis", 1932)

"Each of us carries within us a worldview, a set of assumptions about how the world works - what some call a paradigm - that forms the very questions we allow ourselves to ask, and determines our view of future possibilities." (Frances M Lappé, "Rediscovering America's Values", 1991)

"Worldviews are social constructions, and they channel the search for facts. But facts are found and knowledge progresses, however fitfully. Fact and theory are intertwined, and all great scientists understand the interaction." (Stephen Jay Gould, "Shields of Expectation - and Actuality", 1993)

"A world view is a coherent collection of concepts and theorems that must allow us to construct a global image of the world, and in this way to understand as many elements of our experience as possible." (Diederick Aerts et al, "World views: From Fragmentation to Integration", 1994)

"A world view is a system of co-ordinates or a frame of reference in which everything presented to us by our diverse experiences can be placed. It is a symbolic system of representation that allows us to integrate everything we know about the world and ourselves into a global picture, one that illuminates reality as it is presented to us within a certain culture." (Diederick Aerts et al, "World views: From Fragmentation to Integration", 1994)

"Worldviews are more a mental security blanket than a serious effort to understand the world." (Bryan Caplan, "The Myth of the Rational Voter: Why Democracies Choose Bad Policies", 2011)

"A worldview is a commitment, a fundamental orientation of the heart, that can be expressed as a story or in a set of presuppositions (assumptions which may be true, partially true or entirely false) which we hold (consciously or subconsciously, consistently or inconsistently) about the basic constitution of reality, and that provides the foundations on which we live and more and have our being." (James W Sire, "Naming the Elephant: Worldview as a Concept", 2015)

"A worldview is simply someone's relatively organized understanding of what the world is actually like." (Greg Koukl, [interview with Jonathan Petersen], 2017)

15 February 2021

Systems Thinking V

"[Systems thinking is] A new way to view and mentally frame what we see in the world; a worldview and way of thinking whereby we see the entity or unit first as a whole, with its fit and relationship to its environment as primary concerns." (Stephen G Haines, "The Managers Pocket Guide to Systems Thinking & Learning", 1998)

"The beauty of this [systems thinking] mindset is that its mental models are based on natural laws, principles of interrelationship, and interdependence found in all living systems. They give us a new view of ourselves and our many systems, from the tiniest cell to the entire earth; and as our organizations are included in that great range, they help us define organizational problems as systems problems, so we can respond in more productive ways. The systems thinking mindset is a new orientation to life. In many ways it also operates as a worldview - an overall perspective on, and understanding of, the world." (Stephen G Haines, "The Managers Pocket Guide to Systems Thinking & Learning", 1998)

"As a meta-discipline, systems science will transfer its content from discipline to discipline and address problems beyond conventional reductionist boundaries. Generalists, qualified to manage today’s problem better than the specialist, could be fostered. With these intentions, systems thinking and systems science should not replace but add, complement and integrate those aspects that seem not to be adequately treated by traditional science." (Lars Skyttner, "General Systems Theory: Ideas and Applications", 2001)

"Systems thinking expands the focus of the observer, whereas analytical thinking reduces it. In other words, analysis looks into things, synthesis looks out of them. This attitude of systems thinking is often called expansionism, an alternative to classic reductionism. Whereas analytical thinking concentrates on static and structural properties, systems thinking concentrates on the function and behaviour of whole systems. Analysis gives description and knowledge; systems thinking gives explanation and understanding." (Lars Skyttner, "General Systems Theory: Ideas and Applications", 2001)

"System Thinking is a common concept for understanding how causal relationships and feedbacks work in an everyday problem. Understanding a cause and an effect enables us to analyse, sort out and explain how changes come about both temporarily and spatially in common problems. This is referred to as mental modelling, i.e. to explicitly map the understanding of the problem and making it transparent and visible for others through Causal Loop Diagrams (CLD)." (Hördur V Haraldsson, "Introduction to System Thinking and Causal Loop Diagrams", 2004)

"[systems thinking is]  thinking holistically and conscientiously about the world by focusing on the interaction of the parts and their influence within and over the system." (Kambiz E Maani, "Systems Thinking and the Internet from Independence to Interdependence", Encyclopedia of Information Science and Technology, Second Edition, 2009)

"Systems thinking, in contrast, focuses on how the thing being studied interacts with the other constituents of the system - a set of elements that interact to produce behaviour - of which it is a part. This means that instead of isolating smaller and smaller parts of the system being studied, systems thinking works by expanding its view to take into account larger and larger numbers of interactions as an issue is being studied. This results in sometimes strikingly different conclusions than those generated by traditional forms of analysis, especially when what is being studied is dynamically complex or has a great deal of feedback from other sources, internal or external. Systems thinking allows people to make their understanding of social systems explicit and improve them in the same way that people can use engineering principles to make explicit and improve their understanding of mechanical systems." (Raed M Al-Qirem & Saad G Yaseen, "Modelling a Small Firm in Jordan Using System Dynamics" [in "Handbook of Research on Discrete Event Simulation Environments: Technologies and Applications"], 2010)

"Understanding interdependency requires a way of thinking different from analysis. It requires systems thinking. And analytical thinking and systems thinking are quite distinct. [...] Systems thinking is the art of simplifying complexity. It is about seeing through chaos, managing interdependency, and understanding choice. We see the world as increasingly more complex and chaotic because we use inadequate concepts to explain it. When we understand something, we no longer see it as chaotic or complex." (Jamshid Gharajedaghi, "Systems Thinking: Managing Chaos and Complexity A Platform for Designing Business Architecture", 2011)

"Systems thinking focuses on optimizing for the whole, looking at the overall flow of work, identifying what the largest bottleneck is today, and eliminating it." (Matthew Skelton & Manuel Pais, "Team Topologies: Organizing Business and Technology Teams for Fast Flow", 2019)

Previous Post <<||>> Next Post

06 January 2021

Mental Models LX

"Chemistry and physics are experimental sciences; and those who are engaged in attempting to enlarge the boundaries of science by experiment are generally unwilling to publish speculations; for they have learned, by long experience, that it is unsafe to anticipate events. It is true, they must make certain theories and hypotheses. They must form some kind of mental picture of the relations between the phenomena which they are trying to investigate, else their experiments would be made at random, and without connection." (William Ramsay, "Radium and Its Products", Harper’s Magazine, 1904)

"A mental image gives you a framework upon which to work. It is like the drawing of the architect, or the map of the explorer. Think over this for a few moments until you get the idea firmly fixed in your mind." (William W Atkinson, "Practical Mental Influence and Mental Fascination", 1908)

"A mind exclusively bent upon the idea of utility necessarily narrows the range of the imagination. For it is the imagination which pictures to the inner eye of the investigator the indefinitely extending sphere of the possible, - that region of hypothesis and explanation, of underlying cause and controlling law. The area of suggestion and experiment is thus pushed beyond the actual field of vision." (John G Hibben, "The Paradox of Research", The North American Review 188 (634), 1908)

"The unconscious [...] is always empty - or, more accurately, it is as alien to mental images as is the stomach to the foods which pass through it." (Claude Levi-Strauss, "Structural Anthropology", 1958)

"A cognitive map is a specific way of representing a person's assertions about some limited domain, such as a policy problem. It is designed to capture the structure of the person's causal assertions and to generate the consequences that follow front this structure. […]  a person might use his cognitive map to derive explanations of the past, make predictions for the future, and choose policies in the present." (Robert M Axelrod, "Structure of Decision: The cognitive maps of political elites", 1976)

"The cognitive map is not a picture or image which 'looks like' what it represents; rather, it is an information structure from which map-like images can be reconstructed and from which behaviour dependent upon place information can be generated." (John O'Keefe & Lynn Nadel, "The Hippocampus as a Cognitive Map", 1978)

"A symbol is a mental representation regarding the internal reality referring to its object by a convention and produced by the conscious interpretation of a sign. In contrast to signals, symbols may be used every time if the receiver has the corresponding representation. Symbols also relate to feelings and thus give access not only to information but also to the communicator’s motivational and emotional state. The use of symbols makes it possible for the organism using it to evoke in the receiver the same response it evokes in himself. To communicate with symbols is to use a language." (Lars Skyttner, "General Systems Theory: Ideas and Applications", 2001)

"In the definition of meaning, it is assumed that both the source and receiver have previously coded (and stored) signals of the same or similar referents, such that the messages may have meaning and relate to behaviour. That is, the used symbols must have the same signification for both sender and receiver. If not, the receiver will create a different mental picture than intended by the transmitter. Meaning is generated by individuals in a process of social interaction with a more or less common environment. It is a relation subsisting within a field of experience and appears as an emergent property of a symbolic representation when used in culturally accepted interaction. The relation between the symbolic representation and its meaning is random. Of this, however, the mathematical theory has nothing to say. If human links in the chain of communication are missing, of course no questions of meaning will arise." (Lars Skyttner, "General Systems Theory: Ideas and Applications", 2001)

"The mental model is the arena where imagination takes place. It enables us to experiment with different scenarios by making local alterations to the model. […] To speak of causality, we must have a mental model of the real world. […] Our shared mental models bind us together into communities." (Judea Pearl & Dana Mackenzie, "The Book of Why: The new science of cause and effect", 2018)

"A mental model is a representation, inside your head, of an external reality. Mental models are the basic units which construct a person’s world view. It is the representation that a person has in his mind about the object he is interacting with. It is the way the person thinks about what it is they are doing or dealing with. Mental models shape our actions as to how we act or behave in a particular situation. They define what people will pay attention to and how they approach and solve problems. Mental models are tools for the mind." (Anshul Khare & Vishal Khandelwal, "Mental Models, Investing, And You" Vol 1)

30 November 2020

On Symbols (1980-1989)

"[…] mathematics is not just a symbolism, a set of conventions for the use of special, formal vocabularies, but is intimately connected with the structure of rational thought, with reasoning practices. [...] mathematics is not just a language, and of refusing the foundationalist move of trying to reduce mathematics to logic, instead seeing mathematics as providing rational frameworks for science, is to set science against a background of rational structures and rational methods which itself has a built-in dynamics. The rational framework of science is itself historically conditioned, for it changes with developments in mathematics." (Mary Tiles, "Bachelard: Science and Objectivity", 1984)

"Scientific laws give algorithms, or procedures, for determining how systems behave. The computer program is a medium in which the algorithms can be expressed and applied. Physical objects and mathematical structures can be represented as numbers and symbols in a computer, and a program can be written to manipulate them according to the algorithms. When the computer program is executed, it causes the numbers and symbols to be modified in the way specified by the scientific laws. It thereby allows the consequences of the laws to be deduced." (Stephen Wolfram, "Computer Software in Science and Mathematics", 1984)

"A computer is an interpreted automatic formal system - that is to say, a symbol-manipulating machine." (John Haugeland, "Artificial intelligence: The very idea", 1985)

"We who are heirs to three recent centuries of scientific development can hardly imagine a state of mind in which many mathematical objects were regarded as symbols of spiritual truths or episodes in sacred history. Yet, unless we make this effort of imagination, a fraction of the history of mathematics is incomprehensible.” (Philip J Davis & Rueben Hersh, “The Mathematical Experience”, 1985)

"When a graph is constructed, quantitative and categorical information is encoded, chiefly through position, size, symbols, and color. When a person looks at a graph, the information is visually decoded by the person's visual system. A graphical method is successful only if the decoding process is effective. No matter how clever and how technologically impressive the encoding, it is a failure if the decoding process is a failure. Informed decisions about how to encode data can be achieved only through an understanding of the visual decoding process, which is called graphical perception." (William S Cleveland, "The Elements of Graphing Data", 1985)

"Artificial intelligence is based on the assumption that the mind can be described as some kind of formal system manipulating symbols that stand for things in the world. Thus it doesn't matter what the brain is made of, or what it uses for tokens in the great game of thinking. Using an equivalent set of tokens and rules, we can do thinking with a digital computer, just as we can play chess using cups, salt and pepper shakers, knives, forks, and spoons. Using the right software, one system (the mind) can be mapped onto the other (the computer)." (George Johnson, "Machinery of the Mind: Inside the New Science of Artificial Intelligence", 1986)

"Meaning does not reside in the mathematical symbols. It resides in the cloud of thought enveloping these symbols. It is conveyed in words; these assign meaning to the symbols." (Marvin Chester, "Primer of Quantum Mechanics", 1987)

"[…] the chain of possible combinations of the encounter can be studied as such, as an order which subsists in its rigor, independently of all subjectivity. Through cybernetics, the symbol is embodied in the apparatus - with which it is not to be confused, the apparatus being just its support. And it is embodied in it in a literally trans-subjective way." (Jacques Lacan, 1988)

"Western culture’s world-view appears to be dominated by material objects. […] One of the ways mathematics has gained its power is through the activity of objectivising the abstractions from reality. Through its symbols (letters, numerals, figures) mathematics has taught people how to deal with abstract entities, as if they were objects." (Alan J Bishop, "Mathematics education in its cultural context", Educational Studies in Mathematics 19, 1988)

"People who have a casual interest in mathematics may get the idea that a topologist is a mathematical playboy who spends his time making Möbius bands and other diverting topological models. If they were to open any recent textbook in topology, they would be surprised. They would find page after page of symbols, seldom relieved by a picture or diagram." (Martin Gardner, "Hexaflexagons and Other Mathematical Diversions", 1988)

15 November 2020

On Networks (2010-2019)

"We are beginning to see the entire universe as a holographically interlinked network of energy and information, organically whole and self referential at all scales of its existence. We, and all things in the universe, are non-locally connected with each other and with all other things in ways that are unfettered by the hitherto known limitations of space and time." (Ervin László,"Cosmos: A Co-creator's Guide to the Whole-World", 2010)

"The people we get along with, trust, feel simpatico with, are the strongest links in our networks." (Daniel Goleman, "Working With Emotional Intelligence", 2011) 

"Cybernetics is the study of systems which can be mapped using loops (or more complicated looping structures) in the network defining the flow of information. Systems of automatic control will of necessity use at least one loop of information flow providing feedback." (Alan Scrivener, "A Curriculum for Cybernetics and Systems Theory", 2012)

"If we create networks with the sole intention of getting something, we won't succeed. We can't pursue the benefits of networks; the benefits ensue from investments in meaningful activities and relationships." (Adam Grant, "Give and Take: A Revolutionary Approach to Success", 2013) 

"Information is recorded in vast interconnecting networks. Each idea or image has hundreds, perhaps thousands, of associations and is connected to numerous other points in the mental network." (Peter Russell, "The Brain Book: Know Your Own Mind and How to Use it", 2013) 

"All living systems are networks of smaller components, and the web of life as a whole is a multilayered structure of living systems nesting within other living systems - networks within networks." (Fritjof Capra, "The Systems View of Life: A Unifying Vision", 2014)

"All the variables we can observe in an ecosystem-population densities, availability of nutrients, weather patterns, and so forth-always fluctuate. This is how ecosystems maintain themselves in a flexible state, ready to adapt to changing conditions. The web of life is a flexible, ever-fluctuating network. The more variables are kept fluctuating, the more dynamic is the system; the greater is its flexibility; and the greater is its ability to adapt to changing conditions." (Fritjof Capra, "The Systems View of Life: A Unifying Vision", 2014)

"Deep ecology does not separate humans - or anything else-from the natural environment. It sees the world not as a collection of isolated objects, but as a network of phenomena that are fundamentally interconnected and interdependent. Deep ecology recognizes the intrinsic value of all living beings and views humans as just one particular strand in the web of life." (Fritjof Capra, "The Systems View of Life: A Unifying Vision", 2014)

"In other words, the web of life consists of networks within networks. At each scale, under closer scrutiny, the nodes of the network reveal themselves as smaller networks. We tend to arange these systems, all nesting within larger systems, in a hierarchical scheme by placing the larger systems above the smaller ones in pyramid fashion. But this is a human projection. In nature there is no 'above' or 'below', and there are no hierarchies. There are only networks nesting within other networks." (Fritjof Capra, "The Systems View of Life: A Unifying Vision", 2014)

"The first and most obvious property of any network is its nonlinearity – it goes in all directions. Thus the relationships in a network pattern are nonlinear relationships. In particular, an influence, or message, may travel along a cyclical path, which may become a feedback loop. In living networks, the concept of feedback is intimately connected with the network pattern." (Fritjof Capra, "The Systems View of Life: A Unifying Vision", 2014)

"Whenever we encounter living systems – organisms, parts of organisms, or communities of organisms – we can observe that their components are arranged in network fashion. Whenever we look at life, we look at networks." (Fritjof Capra, "The Systems View of Life: A Unifying Vision", 2014)

"A network (or graph) consists of a set of nodes (or vertices, actors) and a set of edges (or links, ties) that connect those nodes. [...] The size of a network is characterized by the numbers of nodes and edges in it." (Hiroki Sayama, "Introduction to the Modeling and Analysis of Complex Systems", 2015)

"A worldview consists of observations of the individual and other people with respect to the self, time and space, the natural and the supernatural and the sacred and profane. […] Beliefs about the world do not reside in the human mind in chaotic disorder; rather they form a latent system. A worldview cannot, however, be viewed as a well-organised network of cognitive models or a static collection of values; instead it should be regarded as the product of a process shaped by historical, cultural and social perspectives and contexts." (Helena Helve, "A longitudinal perspective on worldviews, values and identities", 2016)

"Although cascading failures may appear random and unpredictable, they follow reproducible laws that can be quantified and even predicted using the tools of network science. First, to avoid damaging cascades, we must understand the structure of the network on which the cascade propagates. Second, we must be able to model the dynamical processes taking place on these networks, like the flow of electricity. Finally, we need to uncover how the interplay between the network structure and dynamics affects the robustness of the whole system." (Albert-László Barabási, "Network Science", 2016)

"The exploding interest in network science during the first decade of the 21st century is rooted in the discovery that despite the obvious diversity of complex systems, the structure and the evolution of the networks behind each system is driven by a common set of fundamental laws and principles. Therefore, notwithstanding the amazing differences in form, size, nature, age, and scope of real networks, most networks are driven by common organizing principles. Once we disregard the nature of the components and the precise nature of the interactions between them, the obtained networks are more similar than different from each other." (Albert-László Barabási, "Network Science", 2016)

"Network theory confirms the view that information can take on 'a life of its own'. In the yeast network my colleagues found that 40 per cent of node pairs that are correlated via information transfer are not in fact physically connected; there is no direct chemical interaction. Conversely, about 35 per cent of node pairs transfer no information between them even though they are causally connected via a 'chemical wire' (edge). Patterns of information traversing the system may appear to be flowing down the 'wires' (along the edges of the graph) even when they are not. For some reason, 'correlation without causation' seems to be amplified in the biological case relative to random networks." (Paul Davies, "The Demon in the Machine: How Hidden Webs of Information Are Solving the Mystery of Life", 2019)

"The concept of integrated information is clearest when applied to networks. Imagine a black box with input and output terminals. Inside are some electronics, such as a network with logic elements (AND, OR, and so on) wired together. Viewed from the outside, it will usually not be possible to deduce the circuit layout simply by examining the cause–effect relationship between inputs and outputs, because functionally equivalent black boxes can be built from very different circuits. But if the box is opened, it’s a different story. Suppose you use a pair of cutters to sever some wires in the network. Now rerun the system with all manner of inputs. If a few snips dramatically alter the outputs, the circuit can be described as highly integrated, whereas in a circuit with low integration the effect of some snips may make no difference at all." (Paul Davies, "The Demon in the Machine: How Hidden Webs of Information Are Solving the Mystery of Life", 2019)

"[...] the Game of Life, in which a few simple rules executed repeatedly can generate a surprising degree of complexity. Recall that the game treats squares, or pixels, as simply on or off (filled or blank) and the update rules are given in terms of the state of the nearest neighbours. The theory of networks is closely analogous. An electrical network, for example, consists of a collection of switches with wires connecting them. Switches can be on or off, and simple rules determine whether a given switch is flipped, according to the signals coming down the wires from the neighbouring switches. The whole network, which is easy to model on a computer, can be put in a specific starting state and then updated step by step, just like a cellular automaton. The ensuing patterns of activity depend both on the wiring diagram (the topology of the network) and the starting state. The theory of networks can be developed quite generally as a mathematical exercise: the switches are called ‘nodes’ and the wires are called ‘edges’. From very simple network rules, rich and complex activity can follow." (Paul Davies, "The Demon in the Machine: How Hidden Webs of Information Are Solving the Mystery of Life", 2019)

"[...] the same network may exhibit fundamentally different patterns of information flow under different dynamics: epidemic spread, ecological interactions, or genetic regulation." (Uzi Harush & Baruch Barzel, "Dynamic patterns of information flow in complex networks", Nature Communications, 2017)

"And that’s what good networkers do. No matter the field, discipline, or industry, if we want to succeed, we must master the networks. Because as the First Law of Success reminds us, the harder it is to measure performance, the less performance matters." (Albert-László Barabási, "The Formula: The Universal Laws of Success", 2018)

On Machines III (Systems vs Machine)

"Systems in many respects resemble machines. A machine is a little system, created to perform, as well as to connect together, in reality, those different movements and effects which the artist has occasion for.  A system is an imaginary machine invented to connect together in the fancy those different movements and effects which are already in reality performed. […] The machines that are first invented to perform any particular movement are always the most complex, and succeeding artists generally discover that, with fewer wheels, with fewer principles of motion, than had originally been employed, the fame effects may be more easily produced. The first systems, in the fame manner, are always the most complex, and a particular connecting chain, or principle, is generally thought necessary to unite every two seemingly disjointed appearances: but it often happens, that one great connecting principle is afterwards found to be sufficient to bind together all the discordant phænomena that occur in a whole species of things." (Adam Smith, "The Wealth of Nations", 1776)

"Since a given system can never of its own accord go over into another equally probable state but into a more probable one, it is likewise impossible to construct a system of bodies that after traversing various states returns periodically to its original state, that is a perpetual motion machine." (Ludwig Boltzmann, "'The Second Law of Thermodynamics", [Address to a Formal meeting of the Imperial Academy of Science], 1886)

"[...] the mystery of mysteries is to view machines making machines [...]" (Benjamin Disraeli, "Coningsby", 1911)

"Physics is not a machine one can take apart; one cannot try each piece in isolation and wait, to adjust it, until its solidity has been minutely checked. Physical science is a system that must be taken as a whole. It is an organism no part of which can be made to function without the remotest parts coming into play, some more, some less, but all in some degree." (Pierre-Maurice-Marie Duhem, 1914)

"The relations that define a system as a unity, and determine the dynamics of interaction and transformations which it may undergo as such a unity constitute the organization of the machine."(Humberto Maturana, “Autopoiesis and cognition: The realization of the living”, 1980)

"The worldview of the classical sciences conceptualized nature as a giant machine composed of intricate but replaceable machine-like parts. The new systems sciences look at nature as an organism endowed with irreplaceable elements and an innate but non-deterministic purpose for choice, for flow, for spontaneity." (Ervin László, "The systems view of the world", 1996) 

"Every system that we build will surprise us with new kinds of flaws until those machines become clever enough to conceal their faults from us." (Marvin Minsky, "The Emotion Machine: Commonsense Thinking, Artificial Intelligence, and the Future of the Human Mind", 2006)

08 October 2020

Systems Thinking III

"Systems thinking is a discipline for seeing the 'structures' that underlie complex situations, and for discerning high from low leverage change. That is, by seeing wholes we learn how to foster health. To do so, systems thinking offers a language that begins by restructuring how we think." (Peter Senge, "The Fifth Discipline", 1990)

"Systems thinking is a discipline for seeing wholes. It is a framework for seeing interrelationships rather than things, for seeing patterns of change rather than static 'snapshots'. It is a set of general principles- distilled over the course of the twentieth century, spanning fields as diverse as the physical and social sciences, engineering, and management. [...] During the last thirty years, these tools have been applied to understand a wide range of corporate, urban, regional, economic, political, ecological, and even psychological systems. And systems thinking is a sensibility for the subtle interconnectedness that gives living systems their unique character." (Peter Senge, "The Fifth Discipline", 1990)

"Systems thinking is a framework for seeing interrelationships rather than things, for seeing patterns rather than static snapshots. It is a set of general principles spanning fields as diverse as physical and social sciences, engineering and management." (Peter Senge, "The Fifth Discipline", 1990) 

"Systems philosophy brings forth a reorganization of ways of thinking. It creates a new worldview, a new paradigm of perception and explanation, which is manifested in integration, holistic thinking, purpose-seeking, mutual causality, and process-focused inquiry.” (Béla H. Bánáthy, "Systems Design of Education”, 1991)

"The new paradigm may be called a holistic world view, seeing the world as an integrated whole rather than a dissociated collection of parts. It may also be called an ecological view, if the term 'ecological' is used in a much broader and deeper sense than usual. Deep ecological awareness recognizes the fundamental interdependence of all phenomena and the fact that, as individuals and societies we are all embedded in (and ultimately dependent on) the cyclical process of nature." (Fritjof Capra & Gunter A Pauli, "Steering business toward sustainability", 1995)

"In the new systems thinking, the metaphor of knowledge as a building is being replaced by that of the network. As we perceive reality as a network of relationships, our descriptions, too, form an interconnected network of concepts and models in which there are no foundations. For most scientists such a view of knowledge as a network with no firm foundations is extremely unsettling, and today it is by no means generally accepted. But as the network approach expands throughout the scientific community, the idea of knowledge as a network will undoubtedly find increasing acceptance." (Fritjof Capra," The Web of Life: a new scientific understanding of living systems", 1996)

"It [system dynamics] focuses on building system dynamics models with teams in order to enhance team learning, to foster consensus and to create commitment with a resulting decision […] System dynamics can be helpful to elicit and integrate mental models into a more holistic view of the problem and to explore the dynamics of this holistic view […] It must be understood that the ultimate goal of the intervention is not to build a system dynamics model. The system dynamics model is a means to achieve other ends […] putting people in a position to learn about a messy problem [...] create a shared social reality […] a shared understanding of the problem and potential solutions [...] to foster consensus within the team [..]" (Jac A M Vennix, "Group Model Building: Facilitating Team Learning Using System Dynamics", 1996)

"Understanding ecological interdependence means understanding relationships. It requires the shifts of perception that are characteristic of systems thinking - from the parts to the whole, from objects to relationships, from contents to patterns. […] Nourishing the community means nourishing those relationships." (Fritjof Capra, "The Web of Life: A New Scientific Understanding of Living Systems", 1996)

"Systems thinking practices the exact opposite of this analytic approach. Systems thinking studies the organization as a whole in its interaction with its environment. Then, it works backwards to understand how each part of that whole works in relation to, and support of, the entire system’s objectives. Only then can the core strategies be formulated." (Stephen G Haines, "The Systems Thinking Approach to Strategic Planning and Management", 2000)

"Systems, and organizations as systems, can only be understood holistically. Try to understand the system and its environment first. Organizations are open systems and, as such, are viable only in interaction with and adaptation to the changing environment." (Stephen G Haines, "The Systems Thinking Approach to Strategic Planning and Management", 2000)

Previous Post <<||>> Next Post

04 October 2020

On Method V (Scientific Method)

"Observation, reason, and experiment make up what we call the scientific method." (Richard Feynman, "Mainly mechanics, radiation, and heat", 1963)

“There are metaphysical problems, which cannot be disposed of by declaring them meaningless. For, as I have repeatedly said, they are ‘beyond physics’ indeed and demand an act of faith. We have to accept this fact to be honest. There are two objectionable types of believers: those who believe the incredible and those who believe that ‘belief’ must be discarded and replaced by 'the scientific method'." (Max Born, “Natural Philosophy of Cause and Chance”, 1964)

"Traditional scientific method has always been at the very best 20-20 hindsight. It's good for seeing where you've been. It's good for testing the truth of what you think you know, but it can't tell you where you ought to go." (Robert M Pirsig, "Zen and the Art of Motorcycle Maintenance", 1974) 

“Of course, we know the laws of trial and error, of large numbers and probabilities. We know that these laws are part of the mathematical and mechanical fabric of the universe, and that they are also at play in biological processes. But, in the name of the experimental method and out of our poor knowledge, are we really entitled to claim that everything happens by chance, to the exclusion of all other possibilities?” (Albert Claude, “The Coming of Age of the Cell”, Science, 1975)

"When terms [...] evolve and change definition with time; and when the social reality which terms are intended to organize and render intelligible is also seen to be in flux, capturing the truth in a net of words becomes a matter of intuition and style more than of any scientific method that can be replicated by others and made to achieve the same result every time someone asks the same question, or undertakes the same operations." (William H McNeill, "Discrepancies among the Social Sciences", 1981)

“[…] mathematics is not just a symbolism, a set of conventions for the use of special, formal vocabularies, but is intimately connected with the structure of rational thought, with reasoning practices. [...] mathematics is not just a language, and of refusing the foundationalist move of trying to reduce mathematics to logic, instead seeing mathematics as providing rational frameworks for science, is to set science against a background of rational structures and rational methods which itself has a built-in dynamics. The rational framework of science is itself historically conditioned, for it changes with developments in mathematics.” (Mary Tiles, “Bachelard: Science and Objectivity”, 1984)

"Scientists use mathematics to build mental universes. They write down mathematical descriptions - models - that capture essential fragments of how they think the world behaves. Then they analyse their consequences. This is called 'theory'. They test their theories against observations: this is called 'experiment'. Depending on the result, they may modify the mathematical model and repeat the cycle until theory and experiment agree. Not that it's really that simple; but that's the general gist of it, the essence of the scientific method." (Ian Stewart & Martin Golubitsky, "Fearful Symmetry: Is God a Geometer?", 1992)

“But our ways of learning about the world are strongly influenced by the social preconceptions and biased modes of thinking that each scientist must apply to any problem. The stereotype of a fully rational and objective ‘scientific method’, with individual scientists as logical (and interchangeable) robots, is self-serving mythology.” (Stephen J Gould, “This View of Life: In the Mind of the Beholder”, “Natural History”, Vol. 103, No. 2, 1994)

"Scientists pursue ideas in an ill-defined but effective way that is often called the scientific method. There is no strict rule of procedure that will lead you from a good idea to a Nobel prize or even to a publishable discovery. Some scientists are meticulously careful; others are highly creative. The best scientists are probably both careful and creative. Although there are various scientific methods in use, a typical approach consists of a series of steps." (Peter Atkins et al, "Chemical Principles: The Quest for Insight" 6th ed., 2013)

“Science, at its core, is simply a method of practical logic that tests hypotheses against experience. Scientism, by contrast, is the worldview and value system that insists that the questions the scientific method can answer are the most important questions human beings can ask, and that the picture of the world yielded by science is a better approximation to reality than any other.” (John Michael Greer, “After Progress: Reason and Religion at the End of the Industrial Age”, 2015)

03 October 2020

The Web of Life III

All knowledge is profitable; profitable in its ennobling effect on the character, in the pleasure it imparts in its acquisition, as well as in the power it gives over the operations of mind and of matter. All knowledge is useful; every part of this complex system of nature is connected with every other. Nothing is isolated. The discovery of to-day, which appears unconnected with any useful process, may, in the course of a few years, become the fruitful source of a thousand inventions." (Joseph Henry, "Report of the Secretary" [Sixth Annual Report of the Board of Regents of the Smithsonian Institution for 1851], 1852)

"The hosts of living organisms are not random creatures, they can be classified in battalions and regiments. Neither are they isolated creatures, for every thread of life is inter-twined with others in a complex web." (John A Thomson, "The System of Animate Nature" Vol. 1, 1920)

"The human mind is so complex and things are so tangled up with each other that, to explain a blade of straw, one would have to take to pieces an entire universe. A definition is a sack of flour compressed into a thimble." (Rémy de Gourmont, "Decadence and Other Essays on the Culture of Ideas", 1921)

"The new paradigm may be called a holistic world view, seeing the world as an integrated whole rather than a dissociated collection of parts. It may also be called an ecological view, if the term 'ecological' is used in a much broader and deeper sense than usual. Deep ecological awareness recognizes the fundamental interdependence of all phenomena and the fact that, as individuals and societies we are all embedded in (and ultimately dependent on) the cyclical process of nature." (Fritjof Capra & Gunter A Pauli, "Steering business toward sustainability", 1995)

"These three insights - the network pattern, the flow of energy, and the nutrient cycles—are essential to the new scientific conception of life. Scientists have formulated them in complicated technical language. They speak of 'autopoietic networks', 'dissipative structures', and 'catalytic cycles'. But the basic phenomena described by those technical terms are the web of life, the flow of energy, and the cycles of nature." (Fritjof Capra," Turn, Turn, Turn: Understanding Nature’s Cycles", 1997)

"All living organisms must feed on continual flows of matter and energy: from their environment to stay alive, and all living organisms continually produce waste. However, an ecosystem generates no net waste, one species' waste being another species' food. Thus, matter cycles continually through the web of life." (Fritjof Capra, "The Hidden Connections", 2002)

"When we look at the world around us, we find that we are not thrown into chaos and randomness but are part of a great order, a grand symphony of life. Every molecule in our body was once a part of previous bodies-living or nonliving-and will be a part of future bodies. In this sense, our body will not die but will live on, again and again, because life lives on. We share not only life's molecules but also its basic principles of organization with the rest of the living world. Arid since our mind, too, is embodied, our concepts and metaphors are embedded in the web of life together with our bodies and brains. We belong to the universe, we are at home in it, and this experience of belonging can make our lives profoundly meaningful." (Fritjof Capra, "The Hidden Connections", 2002)

"All living systems are networks of smaller components, and the web of life as a whole is a multilayered structure of living systems nesting within other living systems - networks within networks." (Fritjof Capra, "The Systems View of Life: A Unifying Vision", 2014)

"In other words, the web of life consists of networks within networks. At each scale, under closer scrutiny, the nodes of the network reveal themselves as smaller networks. We tend to arange these systems, all nesting within larger systems, in a hierarchical scheme by placing the larger systems above the smaller ones in pyramid fashion. But this is a human projection. In nature there is no 'above' or 'below', and there are no hierarchies. There are only networks nesting within other networks." (Fritjof Capra, "The Systems View of Life: A Unifying Vision", 2014)

29 June 2020

On Ecology III

"The social dynamics of human history, even more than that of biological evolution, illustrate the fundamental principle of ecological evolution - that everything depends on everything else. The nine elements that we have described in societal evolution of the three families of phenotypes - the phyla of things, organizations and people, the genetic bases in knowledge operating through energy and materials to produce phenotypes, and the three bonding relations of threat, integration and exchange - all interact on each other." (Kenneth E Boulding, "Ecodynamics: A New Theory Of Societal Evolution", 1978)

"The world is a complex, interconnected, finite, ecological–social–psychological–economic system. We treat it as if it were not, as if it were divisible, separable, simple, and infinite. Our persistent, intractable global problems arise directly from this mismatch." (Donella Meadows, "Whole Earth Models and Systems", 1982)

"Ultimately, uncontrolled escalation destroys a system. However, change in the direction of learning, adaptation, and evolution arises from the control of control, rather than unchecked change per se. In general, for the survival and co-evolution of any ecology of systems, feedback processes must be embodied by a recursive hierarchy of control circuits." (Bradford P Keeney, "Aesthetics of Change", 1983)

"The ecological principle of unity in diversity grades into a richly mediated social principle; hence my use of the term social ecology." (Murray Bookchin, "What Is Social Ecology?" , 1984)

"The existing literature usually stresses the capacity of organizations to learn about and adapt to uncertain, changing environments. We think this emphasis is misplaced. The most important issues about the applicability of evolutionary-ecological theories to organizations concern the timing of changes. Learning and adjusting structure enhance the chance of survival only if the speed of response is commensurate with the temporal patterns of relevant environments." (Michael T Hannan, "Organizational ecology", 1989)

"To halt the decline of an ecosystem, it is necessary to think like an ecosystem." (Douglas P Wheeler, EPA Journal, 1990)

"Ecological Economics studies the ecology of humans and the economy of nature, the web of interconnections uniting the economic subsystem to the global ecosystem of which it is a part." (Robert Costanza, "Ecological Economics: the science and management of sustainability", 1992)

"When the study of the household (ecology) and the management of the household (economics) can be merged, and when ethics can be extended to include environmental as well as human values, then we can be optimistic about the future of humankind. Accordingly, bringing together these three 'E's' is the ultimate holism and the great challenge for our future." (Eugene Odum," Ecology and our endangered life-support systems", 1993)

"Progressively higher levels of organization are attained as catalytic cycles on one level interlock and form hypercycles: these are systems on a higher level of organization. Thus molecules emerge from a combination of chemically active atoms; protocells emerge from sequences of complex molecules; eukaryotic cells emerge among the prokaryotes; metazoa make their appearance among the protozoa and converge in still higher-level ecological and social systems." (Ervin László, "Vision 2020: Reordering Chaos for Global Survival" , 1994)

"The new paradigm may be called a holistic world view, seeing the world as an integrated whole rather than a dissociated collection of parts. It may also be called an ecological view, if the term 'ecological' is used in a much broader and deeper sense than usual. Deep ecological awareness recognizes the fundamental interdependence of all phenomena and the fact that, as individuals and societies we are all embedded in (and ultimately dependent on) the cyclical process of nature." (Fritjof Capra & Gunter A. Pauli," Steering business toward sustainability", 1995)

24 February 2020

On Invention (1975-1999)

"Mathematicians do not agree among themselves whether mathematics is invented or discovered, whether such a thing as mathematical reality exists or is illusory." (Albert L Hammond, "Mathematics - Our invisible culture", 1978)

"For the great majority of mathematicians, mathematics is […] a whole world of invention and discovery - an art. The construction of a new theorem, the intuition of some new principle, or the creation of a new branch of mathematics is the triumph of the creative imagination of the mathematician, which can be compared to that of a poet, the painter and the sculptor." (George F J Temple, "100 Years of Mathematics: a Personal Viewpoint", 1981)

"The purpose of scientific enquiry is not to compile an inventory of factual information, nor to build up a totalitarian world picture of Natural Laws in which every event that is not compulsory is forbidden. We should think of it rather as a logically articulated structure of justifiable beliefs about nature. It begins as a story about a Possible World - a story which we invent and criticize and modify as we go along, so that it winds by being, as nearly as we can make it, a story about real life." (Sir Peter B Medawar, "Pluto’s Republic: Incorporating the Art of the Soluble and Induction Intuition in Scientific Thought", 1982)

"[…] a mathematician's ultimate concern is that his or her inventions be logical, not realistic. This is not to say, however, that mathematical inventions do not correspond to real things. They do, in most, and possibly all, cases. The coincidence between mathematical ideas and natural reality is so extensive and well documented, in fact, that it requires an explanation. Keep in mind that the coincidence is not the outcome of mathematicians trying to be realistic - quite to the contrary, their ideas are often very abstract and do not initially appear to have any correspondence to the real world. Typically, however, mathematical ideas are eventually successfully applied to describe real phenomena […]"(Michael Guillen, "Bridges to Infinity: The Human Side of Mathematics", 1983)

"History is a constant race between invention and catastrophe." (Frank Herbert, "God Emperor of Dune", 1984)

"I shall here present the view that numbers, even whole numbers, are words, parts of speech, and that mathematics is their grammar. Numbers were therefore invented by people in the same sense that language, both written and spoken, was invented. Grammar is also an invention. Words and numbers have no existence separate from the people who use them. Knowledge of mathematics is transmitted from one generation to another, and it changes in the same slow way that language changes. Continuity is provided by the process of oral or written transmission." (Carl Eckart, "Our Modern Idol: Mathematical Science", 1984) 

"Theoretical scientists, inching away from the safe and known, skirting the point of no return, confront nature with a free invention of the intellect. They strip the discovery down and wire it into place in the form of mathematical models or other abstractions that define the perceived relation exactly. The now-naked idea is scrutinized with as much coldness and outward lack of pity as the naturally warm human heart can muster. They try to put it to use, devising experiments or field observations to test its claims. By the rules of scientific procedure it is then either discarded or temporarily sustained. Either way, the central theory encompassing it grows. If the abstractions survive they generate new knowledge from which further exploratory trips of the mind can be planned. Through the repeated alternation between flights of the imagination and the accretion of hard data, a mutual agreement on the workings of the world is written, in the form of natural law." (Edward O Wilson, "Biophilia", 1984)

"One cannot ‘invent’ the structure of an object. The most we can do is to patiently bring it to the light of day, with humility - in making it known, it is ‘discovered’. If there is some sort of inventiveness in this work, and if it happens that we find ourselves the maker or indefatigable builder, we are in no sense ‘making’ or ’building’ these ‘structures’. They have not waited for us to find them in order to exist, exactly as they are! But it is in order to express, as faithfully as possible, the things that we have been detecting or discovering, the reticent structure which we are trying to grasp at, perhaps with a language no better than babbling. Thereby are we constantly driven to ‘invent’ the language most appropriate to express, with increasing refinement, the intimate structure of the mathematical object, and to ‘construct’ with the help of this language, bit by bit, those ‘theories’ which claim to give a fair account of what has been apprehended and seen. There is a continual coming and going, uninterrupted, between the apprehension of things, and the means of expressing them by a language in constant state improvement [...]. The sole thing that constitutes the true inventiveness and imagination of the researcher is the quality of his attention as he listens to the voices of things." (Alexander Grothendieck, "Récoltes et semailles –Rélexions et témoignage sur un passé de mathématicien", 1985)

"Because mathematical proofs are long, they are also difficult to invent. One has to construct, without making any mistakes, long chains of assertions, and see what one is doing, see where one is going. To see means to be able to guess what is true and what is false, what is useful and what is not. To see means to have a feeling for which definitions one should introduce, and what the key assertions are that will allow one to develop a theory in a natural manner." (David Ruelle, "Chance and Chaos", 1991)

"There is one qualitative aspect of reality that sticks out from all others in both profundity and mystery. It is the consistent success of mathematics as a description of the workings of reality and the ability of the human mind to discover and invent mathematical truths." (John D Barrow, "Theories of Everything", 1991)

"Ultimately, discovery and invention are both problems of classification, and classification is fundamentally a problem of finding sameness. When we classify, we seek to group things that have a common structure or exhibit a common behavior." (Grady Booch, "Object-oriented design: With Applications", 1991)

"As a result, surprisingly enough, scientific advance rarely comes solely through the accumulation of new facts. It comes most often through the construction of new theoretical frameworks. [..] To understand scientific development, it is not enough merely to chronicle new discoveries and inventions. We must also trace the succession of worldviews" (Nancy R Pearcey & Charles B Thaxton, "The Soul of Science: Christian Faith and Natural Philosophy", 1994)

"Mathematicians tells us that it is easy to invent mathematical theorems which are true, but that it is hard to find interesting ones. In analyzing music or writing its history, we meet the same difficulty, and it is compounded by another." (Charles Rosen, "The Frontiers of Meaning: Three Informal Lectures on Music", 1994)

"The controversy between those who think mathematics is discovered and those who think it is invented may run and run, like many perennial problems of philosophy. Controversies such as those between idealists and realists, and between dogmatists and sceptics, have already lasted more than two and a half thousand years. I do not expect to be able to convert those committed to the discovery view of mathematics to the inventionist view." (Paul Ernst, "Is Mathematics Discovered or Invented", 1996)

16 February 2020

From Parts to Wholes (1900-1909)

"And as the ideal in the whole of Nature moves in an infinite process toward an Absolute Perfection, we may say that art is in strict truth the apotheosis of Nature. Art is thus at once the exaltation of the natural toward its destined supernatural perfection, and the investiture of the Absolute Beauty with the reality of natural existence. Its work is consequently not a means to some higher end, but is itself a final aim; or, as we may otherwise say, art is its own end. It is not a mere recreation for man, a piece of by-play in human life, but is an essential mode of spiritual activity, the lack of which would be a falling short of the destination of man. It is itself part and parcel of man's eternal vocation." (George H Howison, "The Limits of Evolution, and Other Essays, Illustrating the Metaphysical Theory of Personal Idealism", 1901) 

"Mathematical science is in my opinion an indivisible whole, an organism whose vitality is conditioned upon the connection of its parts. For with all the variety of mathematical knowledge, we are still clearly conscious of the similarity of the logical devices, the relationship of the ideas in mathematics as a whole and the numerous analogies in its different departments." (David Hilbert, "Mathematical Problems", Bulletin American Mathematical Society Vol. 8, 1901-1902)

"For if society lacks the unity that derives from the fact that the relationships between its parts are exactly regulated, that unity resulting from the harmonious articulation of its various functions assured by effective discipline and if, in addition, society lacks the unity based upon the commitment of men's wills to a common objective, then it is no more than a pile of sand that the least jolt or the slightest puff will suffice to scatter.“ (Émile Durkheim, 1903)

"From that time, the universe has steadily become more complex and less reducible to a central control. With as much obstinacy as though it were human, it has insisted on expanding its parts; with as much elusiveness as though it were feminine, it has evaded the attempt to impose on it a single will. Modern science, like modern art, tends, in practice, to drop the dogma of organic unity. Some of the mediaeval habit of mind survives, but even that is said to be yielding before the daily evidence of increasing and extending complexity. The fault, then, was not in man, if he no longer looked at science or art as an organic whole or as the expression of unity. Unity turned itself into complexity, multiplicity, variety, and even contradiction." (Henry Adams, "Mont Saint Michel and Chartres", 1904)

"Reduced to their most pregnant difference, empiricism means the habit of explaining wholes by parts, and rationalism means the habit of explaining parts by wholes. Rationalism thus preserves affinities with monism, since wholeness goes with union, while empiricism inclines to pluralistic views. No philosophy can ever be anything but a summary sketch, a picture of the world in abridgment, a foreshortened bird's-eye view of the perspective of events. And the first thing to notice is this, that the only material we have at our disposal for making a picture of the whole world is supplied by the various portions of that world of which we have already had experience. We can invent no new forms of conception, applicable to the whole exclusively, and not suggested originally by the parts." (William James, "A Pluralistic Universe", 1908)

"A system is a whole which is composed of various parts. But it is not the same thing as an aggregate or heap. In an aggregate or heap, no essential relation exists between the units of which it is composed. In a heap of grain, or pile of stones, one may take away part without the other part being at all affected thereby. But in a system, each part has a fixed and necessary relation to the whole and to all the other parts. For this reason we may say that a building, or a peace of mechanisme, is a system. Each stone in the building, each wheel in the watch, plays a part, and is essential to the whole." (James E Creighton, "An Introductory Logic"‎, 1909)

13 January 2020

On Paradigms I

"All crises begin with the blurring of a paradigm and the consequent loosening of the rules for normal research […] Or finally, the case that will most concern us here, a crisis may end with the emergence of a new candidate for paradigm and with the ensuing battle over its acceptance." (Thomas S Kuhn, "The Structure of Scientific Revolutions", 1962)

"Probably, the single most prevalent claim advanced by the proponents of a new paradigm is that they can solve the problems that led the old one to a crisis." (Thomas S Kuhn, "The Structure of Scientific Revolutions", 1962)

"For our purposes, a simple way to understand paradigms is to see them as maps. We all know that ‘the map is not the territory’. A map is simply an explanation of certain aspects of the territory. That’s exactly what a paradigm is. It is a theory, an explanation, or model of something else." (Stephen R Covey, "The 7 Habits of Highly Effective People", 1989)

"The word paradigm comes from the Greek. It was originally a scientific term, and is more commonly used today to mean a model, theory, perception, assumption, or frame of reference. In the more general sense, it's the way we 'see' the world - not in terms of our visual sense of sight, but in terms of perceiving, understanding, and interpreting." (Stephen Covey, "The 7 Habits of Highly Effective People", 1989)

“Each of us carries within us a worldview, a set of assumptions about how the world works - what some call a paradigm - that forms the very questions we allow ourselves to ask, and determines our view of future possibilities.” (Frances M Lappé, “Rediscovering America's Values”, 1991)

"Paradigms are powerful because they create the lens through which we see the world." (Stephen Covey, "Daily Reflections for Highly Effective People", 1994)

"The shift of paradigms requires an expansion not only of our perceptions and ways of thinking, but also of our values. […] scientific facts emerge out of an entire constellation of human perceptions, values, and actions-in one word, out of a paradigm-from which they cannot be separated. […] Today the paradigm shift in science, at its deepest level, implies a shift from physics to the life sciences." (Fritjof Capra, "The Web of Life", 1996)

"Paradigms are the most general-rather like a philosophical or ideological framework. Theories are more specific, based on the paradigm and designed to describe what happens in one of the many realms of events encompassed by the paradigm. Models are even more specific providing the mechanisms by which events occur in a particular part of the theory's realm. Of all three, models are most affected by empirical data - models come and go, theories only give way when evidence is overwhelmingly against them and paradigms stay put until a radically better idea comes along." (Lee R Beach, "The Psychology of Decision Making: People in Organizations", 2005)

“The crucial concept that brings all of this together is one that is perhaps as rich and suggestive as that of a paradigm: the concept of a model." (Otávio Bueno, [in" Springer Handbook of Model-Based Science", Ed. by Lorenzo Magnani & Tommaso Bertolotti, 2017])

29 December 2019

On Systems (2000-2009)

"I propose a new concept based on an interpretation of ecosystems: sympoietic systems. These are complex, self-organizing but collectively producing, boundaryless systems. A subsequent distinction between sympoietic and autopoietic systems is discussed. This distinction arises from defining a difference between three key system characteristics: 1) autopoietic systems have self-defined boundaries, sympoietic systems do not; 2) autopoietic systems are self-produced, sympoietic systems are collectively produced; and, 3) autopoietic systems are organizationally closed, sympoietic systems are organizationally ajar." (Beth Dempster, "Sympoietic and Autopoietic Systems: A New Distinction for Self-Organizing Systems". 2000)

"Following the traditional classification in the field of control systems, a system that describes the input-output behavior in a way similar to a mathematical mapping without involving a differential operator or equation is called a static system. In contrast, a system described by a differential operator or equation is called a dynamic system." (Guanrong Chen & Trung Tat Pham, "Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems", 2001)

"Formulation of a mathematical model is the first step in the process of analyzing the behaviour of any real system. However, to produce a useful model, one must first adopt a set of simplifying assumptions which have to be relevant in relation to the physical features of the system to be modelled and to the specific information one is interested in. Thus, the aim of modelling is to produce an idealized description of reality, which is both expressible in a tractable mathematical form and sufficiently close to reality as far as the physical mechanisms of interest are concerned." (Francois Axisa, "Discrete Systems" Vol. I, 2001)

"Although the detailed moment-to-moment behavior of a chaotic system cannot be predicted, the overall pattern of its 'random' fluctuations may be similar from scale to scale. Likewise, while the fine details of a chaotic system cannot be predicted one can know a little bit about the range of its 'random' fluctuation." (F David Peat, "From Certainty to Uncertainty", 2002)

"Most physical processes in the real world are nonlinear. It is our abstraction of the real world that leads us to the use of linear systems in modeling these processes. These linear systems are simple, understandable, and, in many situations, provide acceptable simulations of the actual processes. Unfortunately, only the simplest of linear processes and only a very small fraction of the nonlinear having verifiable solutions can be modeled with linear systems theory. The bulk of the physical processes that we must address are, unfortunately, too complex to reduce to algorithmic form - linear or nonlinear. Most observable processes have only a small amount of information available with which to develop an algorithmic understanding. The vast majority of information that we have on most processes tends to be nonnumeric and nonalgorithmic. Most of the information is fuzzy and linguistic in form." (Timothy J Ross & W Jerry Parkinson, "Fuzzy Set Theory, Fuzzy Logic, and Fuzzy Systems", 2002)

"Nature normally hates power laws. In ordinary systems all quantities follow bell curves, and correlations decay rapidly, obeying exponential laws. But all that changes if the system is forced to undergo a phase transition. Then power laws emerge-nature's unmistakable sign that chaos is departing in favor of order. The theory of phase transitions told us loud and clear that the road from disorder to order is maintained by the powerful forces of self-organization and is paved by power laws. It told us that power laws are not just another way of characterizing a system's behavior. They are the patent signatures of self-organization in complex systems." (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)

"One of the key insights of the systems approach has been the realization that the network is a pattern that is common to all life. Wherever we see life, we see networks." (Fritjof Capra, "The Hidden Connections: A Science for Sustainable Living", 2002)

"What is a mathematical model? One basic answer is that it is the formulation in mathematical terms of the assumptions and their consequences believed to underlie a particular ‘real world’ problem. The aim of mathematical modeling is the practical application of mathematics to help unravel the underlying mechanisms involved in, for example, economic, physical, biological, or other systems and processes." (John A Adam, "Mathematics in Nature", 2003)

"According to a 'sociological' view of mathematics, a system, in general, should be able to do whatever is permitted by the laws governing it: the normal state of anarchy is chaos! From this point of view, we should expect that, in the absence of conservation laws, typical motions should be dense in the space available to them; Kolomogorov’s theorem denies this, saying that when the laws are relaxed a bit, the majority of motions stay 'pretty much' where they were, as if in fear of a non-existent police force." (John H Hubbard, "The KAM Theorem", 2004)

"All models are mental projections of our understanding of processes and feedbacks of systems in the real world. The general approach is that models are as good as the system upon which they are based. Models should be designed to answer specific questions and only incorporate the necessary details that are required to provide an answer." (Hördur V Haraldsson & Harald U Sverdrup, "Finding Simplicity in Complexity in Biogeochemical Modelling", 2004)

"Complexity is the characteristic property of complicated systems we don’t understand immediately. It is the amount of difficulties we face while trying to understand it. In this sense, complexity resides largely in the eye of the beholder - someone who is familiar with s.th. often sees less complexity than someone who is less familiar with it. [...] A complex system is created by evolutionary processes. There are multiple pathways by which a system can evolve. Many complex systems are similar, but each instance of a system is unique." (Jochen Fromm, The Emergence of Complexity, 2004)

"Group theory is a powerful tool for studying the symmetry of a physical system, especially the symmetry of a quantum system. Since the exact solution of the dynamic equation in the quantum theory is generally difficult to obtain, one has to find other methods to analyze the property of the system. Group theory provides an effective method by analyzing symmetry of the system to obtain some precise information of the system verifiable with observations." (Zhong-Qi Ma & Xiao-Yan Gu, "Problems and Solutions in Group Theory for Physicists", 2004)

"In complexity thinking the darkness principle is covered by the concept of incompressibility… The concept of incompressibility suggests that the best representation of a complex system is the system itself and that any representation other than the system itself will necessarily misrepresent certain aspects of the original system." (Kurt Richardson, "Systems theory and complexity: Part 1", Emergence: Complexity & Organization Vol.6 (3), 2004)

"Naturalism is the view that the physical world is a self-contained system that works by blind, unbroken natural laws. Naturalism doesn’t come right out and say there’s nothing beyond nature. Rather, it says that nothing beyond nature could have any conceivable relevance to what happens in nature. Naturalism’s answer to theism is not atheism but benign neglect. People are welcome to believe in God, though not a God who makes a difference in the natural order." (William A Dembski, "The Design Revolution: Answering the Toughest Questions About Intelligent Design", 2004)

 "[…] some systems […] are very sensitive to their starting conditions, so that a tiny difference in the initial ‘push’ you give them causes a big difference in where they end up, and there is feedback, so that what a system does affects its own behavior." (John Gribbin, "Deep Simplicity", 2004)

"Technology can relieve the symptoms of a problem without affecting the underlying causes. Faith in technology as the ultimate solution to all problems can thus divert our attention from the most fundamental problem - the problem of growth in a finite system - and prevent us from taking effective action to solve it." (Donella H Meadows & Dennis L Meadows, "The Limits to Growth: The 30 Year Update", 2004)

"The basic concept of complexity theory is that systems show patterns of organization without organizer (autonomous or self-organization). Simple local interactions of many mutually interacting parts can lead to emergence of complex global structures. […] Complexity originates from the tendency of large dynamical systems to organize themselves into a critical state, with avalanches or 'punctuations' of all sizes. In the critical state, events which would otherwise be uncoupled became correlated." (Jochen Fromm, "The Emergence of Complexity", 2004)

"What do people do today when they don’t understand 'the system'? They try to assign responsibility to someone to fix the problem, to oversee 'the system', to coordinate and control what is happening. It is time we recognized that 'the system' is how we work together. When we don’t work together effectively putting someone in charge by its very nature often makes things worse, rather than better, because no one person can understand 'the system' well enough to be responsible. We need to learn how to improve the way we work together, to improve 'the system' without putting someone in charge, in order to make things work." (Yaneer Bar-Yam, "Making Things Work: Solving Complex Problems in a Complex World", 2004)

"A conceptual model is a mental image of a system, its components, its interactions. It lays the foundation for more elaborate models, such as physical or numerical models. A conceptual model provides a framework in which to think about the workings of a system or about problem solving in general. An ensuing operational model can be no better than its underlying conceptualization." (Henry N Pollack, "Uncertain Science … Uncertain World", 2005)

"Art is constructivist in nature, aimed at the deliberate refinement and elaboration of mental models and worldviews. These are the natural products of cognition itself, the outcome of the brain’s tendency to strive for the integration of perceptual and conceptual material over time. […] human culture is essentially a distributed cognitive system within which worldviews and mental models are constructed and shared by the members of a society. Artists are traditionally at the forefront of that process, and have a large influence on our worldviews and mental models." (Mark Turner, "The Artful Mind : cognitive science and the riddle of human creativity", 2006)

"The progress of science requires the growth of understanding in both directions, downward from the whole to the parts and upward from the parts to the whole." (Freeman J Dyson, "The Scientist As Rebel", 2006)

"Effective models require a real world that has enough structure so that some of the details can be ignored. This implies the existence of solid and stable building blocks that encapsulate key parts of the real system’s behavior. Such building blocks provide enough separation from details to allow modeling to proceed."(John H. Miller & Scott E. Page," Complex Adaptive Systems: An Introduction to Computational Models of Social Life", 2007)

"Historically, science has pursued a premise that Nature can be understood fully, its future predicted precisely, and its behavior controlled at will. However, emerging knowledge indicates that the nature of Earth and biological systems transcends the limits of science, questioning the premise of knowing, prediction, and control. This knowledge has led to the recognition that, for civilized human survival, technological society has to adapt to the constraints of these systems." (Nari Narasimhan, "Limitations of Science and Adapting to Nature", Environmental Research Letters, 2007)

"Humans have difficulty perceiving variables accurately […]. However, in general, they tend to have inaccurate perceptions of system states, including past, current, and future states. This is due, in part, to limited ‘mental models’ of the phenomena of interest in terms of both how things work and how to influence things. Consequently, people have difficulty determining the full implications of what is known, as well as considering future contingencies for potential systems states and the long-term value of addressing these contingencies. " (William B. Rouse, "People and Organizations: Explorations of Human-Centered Design", 2007)

"Systemic problems trace back in the end to worldviews. But worldviews themselves are in flux and flow. Our most creative opportunity of all may be to reshape those worldviews themselves. New ideas can change everything." (Anthony Weston, "How to Re-Imagine the World", 2007)

"The system is highly sensitive to some small changes and blows them up into major alterations in weather patterns. This is popularly known as the butterfly effect in that it is possible for a butterfly to flap its wings in São Paolo, so making a tiny change to air pressure there, and for this tiny change to escalate up into a hurricane over Miami. You would have to measure the flapping of every butterfly’s wings around the earth with infinite precision in order to be able to make long-term forecasts. The tiniest error made in these measurements could produce spurious forecasts. However, short-term forecasts are possible because it takes time for tiny differences to escalate."  (Ralph D Stacey, "Strategic Management and Organisational Dynamics: The Challenge of Complexity" 5th Ed. , 2007)

"A characteristic of such chaotic dynamics is an extreme sensitivity to initial conditions (exponential separation of neighboring trajectories), which puts severe limitations on any forecast of the future fate of a particular trajectory. This sensitivity is known as the ‘butterfly effect’: the state of the system at time t can be entirely different even if the initial conditions are only slightly changed, i.e., by a butterfly flapping its wings." (Hans J Korsch et al, „Chaos: A Program Collection for the PC", 2008)

"A system is a set of things – people, cells, molecules, or whatever – interconnected in such a way that they produce their own pattern of behavior over time. […] The system, to a large extent, causes its own behavior." (Donella H Meadows, "Thinking in Systems: A Primer", 2008) 

 "A system, it is said, is a collection of parts together with their relationships that forms a whole that serves a purpose that is meaningful to the system alone, that is, not to its parts or their relationships." (John Boardman & Brian Sauser, "Systems Thinking: Coping with 21st Century Problems", 2008)

"[…] our mental models fail to take into account the complications of the real world - at least those ways that one can see from a systems perspective. It is a warning list. Here is where hidden snags lie. You can’t navigate well in an interconnected, feedback-dominated world unless you take your eyes off short-term events and look for long-term behavior and structure; unless you are aware of false boundaries and bounded rationality; unless you take into account limiting factors, nonlinearities and delays. You are likely to mistreat, misdesign, or misread systems if you don’t respect their properties of resilience, self-organization, and hierarchy." (Donella H Meadows, "Thinking in Systems: A Primer", 2008)

"The addition of new elements or agents to a particular system multiplies exponentially the number of connections or potential interactions among those elements or agents, and hence the number of possible outcomes. This is an important attribute of complexity theory." (Mark Marson, "What Are Its Implications for Educational Change?", 2008)

"Two systems concepts lie at the disposal of the architect to reflect the beauty of harmony: parsimony and variety. The law of parsimony states that given several explanations of a specific phenomenon, the simplest is probably the best. […] On the other hand, the law of requisite variety states that for a system to survive in its environment the variety of choice that the system is able to make must equal or exceed the variety of influences that the environment can impose on the system." (John Boardman & Brian Sauser, "Systems Thinking: Coping with 21st Century Problems", 2008)

"A model is a representation in that it (or its properties) is chosen to stand for some other entity (or its properties), known as the target system. A model is a tool in that it is used in the service of particular goals or purposes; typically these purposes involve answering some limited range of questions about the target system." (Wendy S Parker, "Confirmation and Adequacy-for-Purpose in Climate Modelling", Proceedings of the Aristotelian Society, Supplementary Volumes, Vol. 83, 2009)

15 December 2019

On Metaphors V

"Metaphor consists in giving the thing a name that belongs to something else; the transference being either from genus to species, or from species to genus, or from species to species, or on grounds of analogy." (Aristotle, "Poetics", cca. 335 BC)
 
"Mathematical research can lend its organisational characteristics to poetry, whereby disjointed metaphors take on a universal sense. Similarly, the axiomatic foundations of group theory can be assimilated into a larger moral concept of a unified universe. Without this, mathematics would be a laborious Barbary." (Dan Barbilian, "The Autobiography of the Scientist", 1940)

"[…] the major mathematical research acquires an organization and orientation similar to the poetical function which, adjusting by means of metaphor disjunctive elements, displays a structure identical to the sensitive universe. Similarly, by means of its axiomatic or theoretical foundation, mathematics assimilates various doctrines and serves the instructive purpose, the one set up by the unifying moral universe of concepts. " (Dan Barbilian, "The Autobiography of the Scientist", 1940)

"[…] theoretical science is essentially disciplined exploitation of metaphor." (Anatol Rapoport, "Operational Philosophy", 1953)

"Speaking without metaphor we have to declare that we are here faced with one of these typical antinomies caused by the fact that we have not yet succeeded in elaborating a fairly understandable outlook on the world without retiring our own mind, the producer of the world picture, from it, so that mind has no place in it. The attempt to press it into it, after all, necessarily produces some absurdities." (Erwin Schrödinger, "Mind and Matter: the Tarner Lectures", 1956)

"The symbol and the metaphor are as necessary to science as to poetry." (Jacob Bronowski, "Science and Human Values", 1956) 

"The model is only a suggestive metaphor, a fiction about the messy and unwieldy observations of the real world. In order for it to be persuasive, to convey a sense of credibility, it is important that it not be too complicated and that the assumptions that are made be clearly in evidence. In short, the model must be simple, transparent, and verifiable." (Edward Beltrami, "Mathematics for Dynamic Modeling", 1987)
 
"People have amazing facilities for sensing something without knowing where it comes from (intuition); for sensing that some phenomenon or situation or object is like something else (association); and for building and testing connections and comparisons, holding two things in mind at the same time (metaphor). These facilities are quite important for mathematics. Personally, I put a lot of effort into ‘listening’ to my intuitions and associations, and building them into metaphors and connections. This involves a kind of simultaneous quieting and focusing of my mind. Words, logic, and detailed pictures rattling around can inhibit intuitions and associations." (William P Thurston, "On proof and progress in mathematics", Bulletin of the American Mathematical Society Vol. 30 (2), 1994)

"If we are to have meaningful, connected experiences; ones that we can comprehend and reason about; we must be able to discern patterns to our actions, perceptions, and conceptions. Underlying our vast network of interrelated literal meanings (all of those words about objects and actions) are those imaginative structures of understanding such as schema and metaphor, such as the mental imagery that allows us to extrapolate a path, or zoom in on one part of the whole, or zoom out until the trees merge into a forest." (William H Calvin, "The Cerebral Code", 1996)

"The logic of the emotional mind is associative; it takes elements that symbolize a reality, or trigger a memory of it, to be the same as that reality. That is why similes, metaphors and images speak directly to the emotional mind." (Daniel Goleman, "Emotional Intelligence", 1996)

23 November 2019

James H Jeans - Collected Quotes

"The concepts which now prove to be fundamental to our understanding of nature- a space which is finite; a space which is empty, so that one point [of our 'material' world] differs from another solely in the properties of space itself; four-dimensional, seven- and more dimensional spaces; a space which for ever expands; a sequence of events which follows the laws of probability instead of the law of causation - or alternatively, a sequence of events which can only be fully and consistently described by going outside of space and time - all these concepts seem to my mind to be structures of pure thought, incapable of realisation in any sense which would properly be described as material." (James Jeans, "The Mysterious Universe", 1930)

"The final truth about phenomena resides in the mathematical description of it; so long as there is no imperfection in this, our knowledge is complete. We go beyond the mathematical formula at our own risk; we may find a [nonmathematical] model or picture that helps us to understand it, but we have no right to expect this, and our failure to find such a model or picture need not indicate that either our reasoning or our knowledge is at fault." (James Jeans, "The Mysterious Universe", 1930)

"Today there is a wide measure of agreement, which on the physical side of science approaches almost to unanimity, that the stream of knowledge is heading towards a non-mechanical reality; the universe begins to look more like a great thought than like a great machine. Mind no longer appears as an accidental intruder into the realm of matter; we are beginning to suspect that we ought rather to hail it as a creator and governor of the realm of matter [...]" (James Jeans, "The Mysterious Universe", 1930)

"In brief, a mathematical formula can never tell us what a thing is, but only how it behaves; it can only specify an object through its properties. And these are unlikely to coincide in toto with the properties of any single macroscopic object of our everyday life.” (James H Jeans, "The Mysterious Universe", 1930)

"The essential fact is simply that all the pictures which science now draws of nature, and which alone seem capable of according with observational fact, are mathematical pictures." (James H Jeans, "The Mysterious Universe", 1930)

"The making of models or pictures to explain mathematical formulae and the phenomena they describe is not a step towards, but a step away from reality; it is like making graven images of a spirit." (James H Jeans, "The Mysterious Universe", 1930)

"[…] our knowledge of the external world must always consist of numbers, and our picture of the universe - the synthesis of our knowledge - must necessarily be mathematical in form. All the concrete details of the picture, the apples, the pears and bananas, the ether and atoms and electrons, are mere clothing that we ourselves drape over our mathematical symbols - they do not belong to Nature, but to the parables by which we try to make Nature comprehensible." (James H Jeans, "The New World-Picture of Modern Physics", Supplement to Nature Vol. 134 (3384), 1934)

“A science which confines itself to correlating the phenomena can never learn anything about the reality underlying the phenomena, while a science which goes further than this, and introduces hypotheses about reality can never acquire certain knowledge of a positive kind about reality […]” (James H Jeans, “Physics and Philosophy” 3rd Ed., 1943)

“Exhaustive studies by many investigators have shown that the fundamental laws of nature do not control the phenomena directly. We must picture them as operating in a substratum of which we can form no mental picture unless we are willing to introduce a number of irrelevant and therefore unjustifiable suppositions.” (James H Jeans, “Physics and Philosophy” 3rd Ed., 1943)

“In time they [physicists] hoped to devise a model which would reproduce all the phenomena of physics, and so make it possible to predict them all. […] To-day we not only have no perfect model, but we know that it is of no use to search for one - it could have no intelligible meaning for us. For we have found out that nature does not function in a way that can be made comprehensible to the human mind through models or pictures. […] Although we can never devise a pictorial representation which shall be both true to nature and intelligible to our minds, we may still be able to make partial aspects of the truth comprehensible through pictorial representations or parables. As the whole truth does not admit of intelligible representation, every such pictorial representation or parable must fail somewhere. The physicist of the last generation was continually making pictorial representations and parables, and also making the mistake of treating the half-truths of pictorial representations and parables as literal truths.” (James H Jeans, “Physics and Philosophy” 3rd Ed., 1943)

“It was supposed that a model which reproduced all the phenomena of a science, and so made it possible to predict them all, must in some way correspond to the reality underlying the phenomena. But obviously this cannot be so. After one perfect model had been found, a second of equal perfection might appear, and as both models could not correspond to reality, we should have at least one perfect model which did not correspond to reality. Thus we could never be sure that any model corresponded to reality. In brief, we can never have certain knowledge as to the nature of reality.” (James H Jeans, “Physics and Philosophy” 3rd Ed., 1943)

“[…] many philosophers have found it difficult to accept the hypothesis that an object is just about what it appears to be, and so is like the mental picture it produces in our minds. For an object and a mental picture are of entirely different natures - a brick and the mental picture of a brick can at best no more resemble one another than an orchestra and a symphony. In any case, there is no compelling reason why phenomena - the mental visions that a mind constructs out of electric currents in a brain - should resemble the objects that produced these currents in the first instance.” (James H Jeans, “Physics and Philosophy” 3rd Ed., 1943)

“Nothing is left in the world but happenings for which no explanation or interpretation is offered or even attempted, and science has now for its single aim the discovery of the laws to which these happenings conform - the pattern of events.” (James H Jeans, “Physics and Philosophy” 3rd Ed., 1943)

“Physicists who are trying to understand nature may work in many different fields and by many different methods; one may dig, one may sow, one may reap. But the final harvest will always be a sheaf of mathematical formulae. These will never describe nature itself, hut only our observations on nature. Our studies can never put us into contact with reality; we can never penetrate beyond the impressions that reality implants in our minds.” (James H Jeans, “Physics and Philosophy” 3rd Ed., 1943)

"[…] physics tries to discover the pattern of events which controls the phenomena we observe. But we can never know what this pattern means or how it originates; and even if some superior intelligence were to tell us, we should find the explanation unintelligible. Our studies can never put us into contact with reality, and its true meaning and nature must be for ever hidden from us." (James H Jeans, "Physics and Philosophy" 3rd Ed., 1943)

“Science usually advances by a succession of small steps, through a fog in which even the most keen-sighted explorer can seldom see more than a few paces ahead. Occasionally the fog lifts, an eminence is gained, and a wider stretch of territory can be surveyed - sometimes with startling results. A whole science may then seem to undergo a kaleidoscopic ‘rearrangement’, fragments of knowledge being found to fit together in a hitherto unsuspected manner. Sometimes the shock of readjustment may spread to other sciences; sometimes it may divert the whole current of human thought.” (James H Jeans, “Physics and Philosophy” 3rd Ed., 1943)

“The pictures we draw of nature show similar limitations; these are the price we pay for limiting our pictures of nature to the kinds that can be understood by our minds. As we cannot draw one perfect picture, we make two imperfect pictures and turn to one or the other according as we want one property or another to be accurately delineated. Our observations tell us which is the right picture to use for each particular purpose […] . Yet some properties of nature are so far-reaching and general that neither picture can depict them properly of itself. In such cases we must appeal to both pictures, and these sometimes give us different and inconsistent information. Where, then, shall we find the truth?” (James H Jeans, “Physics and Philosophy” 3rd Ed., 1943)

 “Those who are content with a positivist conception of the aims of science will feel that he is in an entirely satisfactory position; he has discovered the pattern of events, and so can predict accurately; what more can he want? A mental picture would be an added luxury, but also a useless luxury. For if the picture did not bear any resemblance at all to the reality it would be valueless, and if it did it would be unintelligible […]” (James H Jeans, “Physics and Philosophy” 3rd Ed., 1943)

“When two hypotheses are possible, we provisionally choose that which our minds adjudge to the simpler on the supposition that this Is the more likely to lead in the direction of the truth.” (James H Jeans, “Physics and Philosophy” 3rd Ed., 1943)

 “Whenever a man increases the content of his mind he gains new knowledge, and this occurs each time a new relation is established between the worlds on the two sides of the sense-organs - the world of ideas in an individual mind, and the world of objects existing outside individual minds which is common to us all.” (James H Jeans, “Physics and Philosophy” 3rd Ed., 1943)

 “Yet a review of receipt physics has shown that all attempts at mechanical models or pictures have failed and must fail. For a mechanical model or picture must represent things as happening in space and time, while it has recently become clear that the ultimate processes of nature neither occur in, nor admit of representation in, space and time. Thus an understanding of the ultimate processes of nature is for ever beyond our reach: we shall never be able - even in imagination - to open the case of our watch and see how the wheels go round. The true object of scientific study can never be the realities of nature, but only our own observations on nature.” (James H Jeans, “Physics and Philosophy” 3rd Ed., 1943)

"All the pictures which science draws of Nature, and which alone seem capable of according with observational facts, are mathematical pictures." (Sir James Jeans)

Related Posts Plugin for WordPress, Blogger...

On Leonhard Euler

"I have been able to solve a few problems of mathematical physics on which the greatest mathematicians since Euler have struggled in va...