Showing posts with label sampling. Show all posts
Showing posts with label sampling. Show all posts

15 August 2025

On Sampling (2000-2019)

"Statisticians can calculate the probability that such random samples represent the population; this is usually expressed in terms of sampling error [...]. The real problem is that few samples are random. Even when researchers know the nature of the population, it can be time-consuming and expensive to draw a random sample; all too often, it is impossible to draw a true random sample because the population cannot be defined. This is particularly true for studies of social problems. [...] The best samples are those that come as close as possible to being random." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"There are two problems with sampling - one obvious, and  the other more subtle. The obvious problem is sample size. Samples tend to be much smaller than their populations. [...] Obviously, it is possible to question results based on small samples. The smaller the sample, the less confidence we have that the sample accurately reflects the population. However, large samples aren't necessarily good samples. This leads to the second issue: the representativeness of a sample is actually far more important than sample size. A good sample accurately reflects (or 'represents') the population." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"First, if you already know that the population from which your sample has been taken is normally distributed (perhaps you have data for a variable that has been studied before), you can assume the distribution of sample means from this population will also be normally distributed. Second, the central limit theorem […] states that the distribution of the means of samples of about 25 or more taken from any population will be approximately normal, provided the population is not grossly non-normal (e.g. a population that is bimodal). Therefore, provided your sample size is sufficiently large you can usually do a parametric test. Finally, you can examine your sample. Although there are statistical tests for normality, many statisticians have cautioned that these tests often indicate the sample is significantly non normal even when a t-test will still give reliable results." (Steve McKillup, "Statistics Explained: An Introductory Guide for Life Scientists", 2005)

"Unfortunately, the only way to estimate the appropriate minimum sample size needed in an experiment is to know, or have good estimates of, the effect size and standard deviation of the population(s). Often the only way to estimate these is to do a pilot experiment with a sample. For most tests there are formulae that use these (sample) statistics to give the appropriate sized sample for a desired power." (Steve McKillup, "Statistics Explained: An Introductory Guide for Life Scientists", 2005)

"Traditional statistics is strong in devising ways of describing data and inferring distributional parameters from sample. Causal inference requires two additional ingredients: a science-friendly language for articulating causal knowledge, and a mathematical machinery for processing that knowledge, combining it with data and drawing new causal conclusions about a phenomenon." (Judea Pearl, "Causal inference in statistics: An overview", Statistics Surveys 3, 2009)

"Why are you testing your data for normality? For large sample sizes the normality tests often give a meaningful answer to a meaningless question (for small samples they give a meaningless answer to a meaningful question)." (Greg Snow, "R-Help", 2014)

"The closer that sample-selection procedures approach the gold standard of random selection - for which the definition is that every individual in the population has an equal chance of appearing in the sample - the more we should trust them. If we don’t know whether a sample is random, any statistical measure we conduct may be biased in some unknown way." (Richard E Nisbett, "Mindware: Tools for Smart Thinking", 2015)

"A popular misconception holds that the era of Big Data means the end of a need for sampling. In fact, the proliferation of data of varying quality and relevance reinforces the need for sampling as a tool to work efficiently with a variety of data, and minimize bias. Even in a Big Data project, predictive models are typically developed and piloted with samples." (Peter C Bruce & Andrew G Bruce, "Statistics for Data Scientists: 50 Essential Concepts", 2016)


22 April 2021

On Sampling III

"The fact must be expressed as data, but there is a problem in that the correct data is difficult to catch. So that I always say 'When you see the data, doubt it!' 'When you see the measurement instrument, doubt it!' [...]For example, if the methods such as sampling, measurement, testing and chemical analysis methods were incorrect, data. […] to measure true characteristics and in an unavoidable case, using statistical sensory test and express them as data." (Kaoru Ishikawa, Annual Quality Congress Transactions, 1981)

"The law of truly large numbers states: With a large enough sample, any outrageous thing is likely to happen." (Frederick Mosteller, "Methods for Studying Coincidences", Journal of the American Statistical Association Vol. 84, 1989)

"A little thought reveals a fact widely understood among statisticians: The null hypothesis, taken literally (and that’s the only way you can take it in formal hypothesis testing), is always false in the real world. [...] If it is false, even to a tiny degree, it must be the case that a large enough sample will produce a significant result and lead to its rejection. So if the null hypothesis is always false, what’s the big deal about rejecting it?" (Jacob Cohen,"Things I Have Learned (So Far)", American Psychologist, 1990)

"When looking at the end result of any statistical analysis, one must be very cautious not to over interpret the data. Care must be taken to know the size of the sample, and to be certain the method forg athering information is consistent with other samples gathered. […] No one should ever base conclusions without knowing the size of the sample and how random a sample it was. But all too often such data is not mentioned when the statistics are given - perhaps it is overlooked or even intentionally omitted." (Theoni Pappas, "More Joy of Mathematics: Exploring mathematical insights & concepts", 1991)

"When the sample size is small or the study is of one organization, descriptive use of the thematic coding is desirable." (Richard Boyatzis, "Transforming qualitative information", 1998)

19 April 2021

On Sampling (-1949)

"By a small sample we may judge of the whole piece." (Miguel de Cervantes, "Don Quixote de la Mancha", 1605–1615)

"To a very striking degree our culture has become a Statistical culture. Even a person who may never have heard of an index number is affected [...] by [...] of those index numbers which describe the cost of living. It is impossible to understand Psychology, Sociology, Economics, Finance or a Physical Science without some general idea of the meaning of an average, of variation, of concomitance, of sampling, of how to interpret charts and tables." (Carrol D Wright, 1887)

"If the number of experiments be very large, we may have precise information as to the value of the mean, but if our sample be small, we have two sources of uncertainty: (I) owing to the 'error of random sampling' the mean of our series of experiments deviates more or less widely from the mean of the population, and (2) the sample is not sufficiently large to determine what is the law of distribution of individuals." (William S Gosset, "The Probable Error of a Mean", Biometrika, 1908)

"The postulate of randomness thus resolves itself into the question, 'of what population is this a random sample?' which must frequently be asked by every practical statistician." (Ronald Fisher, "On the Mathematical Foundation of Theoretical Statistics", Philosophical Transactions of the Royal Society of London Vol. A222, 1922)

"The principle underlying sampling is that a set of objects taken at random from a larger group tends to reproduce the characteristics of that larger group: this is called the Law of Statistical Regularity. There are exceptions to this rule, and a certain amount of judgment must be exercised, especially when there are a few abnormally large items in the larger group. With erratic data, the accuracy of sampling can often be tested by comparing several samples. On the whole, the larger the sample the more closely will it tend to resemble the population from which it is taken; too small a sample would not give reliable results." (Lewis R Connor, "Statistics in Theory and Practice", 1932)

"If the chance of error alone were the sole basis for evaluating methods of inference, we would never reach a decision, but would merely keep increasing the sample size indefinitely." (C West Churchman, "Theory of Experimental Inference", 1948)

"If significance tests are required for still larger samples, graphical accuracy is insufficient, and arithmetical methods are advised. A word to the wise is in order here, however. Almost never does it make sense to use exact binomial significance tests on such data - for the inevitable small deviations from the mathematical model of independence and constant split have piled up to such an extent that the binomial variability is deeply buried and unnoticeable. Graphical treatment of such large samples may still be worthwhile because it brings the results more vividly to the eye." (Frederick Mosteller & John W Tukey, "The Uses and Usefulness of Binomial Probability Paper?", Journal of the American Statistical Association 44, 1949) 

Frederick Mosteller - Collected Quotes

 "As usual we may make the errors of I) rejecting the null hypothesis when it is true, II) accepting the null hypothesis when it is false. But there is a third kind of error which is of interest because the present test of significance is tied up closely with the idea of making a correct decision about which distribution function has slipped furthest to the right. We may make the error of III) correctly rejecting the null hypothesis for the wrong reason." (Frederick Mosteller, "A k-Sample Slippage Test for an Extreme Population", The Annals of Mathematical Statistics 19, 1948)

"Errors of the third kind happen in conventional tests of differences of means, but they are usually not considered, although their existence is probably recognized. It seems to the author that there may be several reasons for this among which are 1) a preoccupation on the part of mathematical statisticians with the formal questions of acceptance and rejection of null hypotheses without adequate consideration of the implications of the error of the third kind for the practical experimenter, 2) the rarity with which an error of the third kind arises in the usual tests of significance." (Frederick Mosteller, "A k-Sample Slippage Test for an Extreme Population", The Annals of Mathematical Statistics 19, 1948)

"For many purposes graphical accuracy is sufficient. The speed of graphical processes, and more especially the advantages of visual presentation in pointing out facts or clues which might otherwise be overlooked, make graphical analysis very valuable." (Frederick Mosteller & John W Tukey, "The Uses and Usefulness of Binomial Probability Paper?", Journal of the American Statistical Association 44, 1949)

"If significance tests are required for still larger samples, graphical accuracy is insufficient, and arithmetical methods are advised. A word to the wise is in order here, however. Almost never does it make sense to use exact binomial significance tests on such data - for the inevitable small deviations from the mathematical model of independence and constant split have piled up to such an extent that the binomial variability is deeply buried and unnoticeable. Graphical treatment of such large samples may still be worthwhile because it brings the results more vividly to the eye." (Frederick Mosteller & John W Tukey, "The Uses and Usefulness of Binomial Probability Paper?", Journal of the American Statistical Association 44, 1949)

"Scientific and technological advances have made the world we live in complex and hard to understand. […] Science itself shows the same growing complexity. We often hear that 'one man can no longer cover a broad enough field' and that 'there is too much narrow specialization'. And yet these complexities must be met - and resolved. At all levels, decisions must be made which involve consideration of more than a single field." (Frederick Mosteller et al, "The Education of a Scientific Generalist", Science 109,1949)

"Mathematical models for empirical phenomena aid the development of a science when a sufficient body of quantitative information has been accumulated. This accumulation can be used to point the direction in which models should be constructed and to test the adequacy of such models in their interim states. Models, in turn, frequently are useful in organizing and interpreting experimental data and in suggesting new directions for experimental research." (Robert R. Bush & Frederick Mosteller, "A Mathematical Model for Simple Learning", Psychological Review 58, 1951)

"Almost any sort of inquiry that is general and not particular involves both sampling and measurement […]. Further, both the measurement and the sampling will be imperfect in almost every case. We can define away either imperfection in certain cases. But the resulting appearance of perfection is usually only an illusion." (Frederick Mosteller et al, "Principles of Sampling", Journal of the American Statistical Association Vol. 49 (265), 1954)

"Because representativeness is inherent in the sampling plan and not in the particular sample at hand, we can never make adequate use of sample results without some measure of how well the results of this particular sample are likely to agree with the results of other samples which the same sampling plan might have provided. The ability to assess stability fairly is as important as the ability to represent the population fairly. Modern sampling plans concentrate on both." (Frederick Mosteller et al, "Principles of Sampling", Journal of the American Statistical Association Vol. 49 (265), 1954)

"By sampling we can learn only about collective properties of populations, not about properties of individuals. We can study the average height, the percentage who wear hats, or the variability in weight of college juniors [...]. The population we study may be small or large, but there must be a population - and what we are studying must be a population characteristic. By sampling, we cannot study individuals as particular entities with unique idiosyncrasies; we can study regularities (including typical variabilities as well as typical levels) in a population as exemplified by the individuals in the sample." (Frederick Mosteller et al, "Principles of Sampling", Journal of the American Statistical Association Vol. 49 (265), 1954)

"In many cases general probability samples can be thought of in terms of (1) a subdivision of the population into strata, (2) a self-weighting probability sample in each stratum, and (3) combination of the stratum sample means weighted by the size of the stratum." (Frederick Mosteller et al, "Principles of Sampling", Journal of the American Statistical Association Vol. 49 (265), 1954)

"That which can be and should be representative is the sampling plan, which includes the manner in which the sample was drawn (essentially a specification of what other samples might have been drawn and what the relative chances of selection were for any two possible samples) and how it is to be analyzed. [...] It is clear that many [...] groups fail to be represented in any particular sample, yet this is not a criticism of that sample. Representation is not, and should not be, by groups. It is, and should be, by individuals as members of the sampled population. Representation is not, and should not be, in any particular sample. It is, and should be, in the sampling plan." (Frederick Mosteller et al, "Principles of Sampling", Journal of the American Statistical Association Vol. 49 (265), 1954)

"The main purpose of a significance test is to inhibit the natural enthusiasm of the investigator." (Frederick Mosteller, "Selected Quantitative Techniques", 1954)

"We must emphasize that such terms as 'select at random', 'choose at random', and the like, always mean that some mechanical device, such as coins, cards, dice, or tables of random numbers, is used." (Frederick Mosteller et al, "Principles of Sampling", Journal of the American Statistical Association Vol. 49 (265), 1954)

"We have made the sampling plan representative, not by giving each individual an equal chance to enter the sample and then weighting them equally, but by a more noticeable process of compensation, where those individuals very likely to enter the sample are weighted less, while those unlikely to enter are weighted more when they do appear. The net result is to give each individual an equal chance of affecting the (weighted) sample mean." (Frederick Mosteller et al, "Principles of Sampling", Journal of the American Statistical Association Vol. 49 (265), 1954)

"We realize that if someone just 'grabs a handful', the individuals in the handful almost always resemble one another (on the average) more than do the members of a simple random sample. Even if the 'grabs' [sampling] are randomly spread around so that every individual has an equal chance of entering the sample, there are difficulties. Since the individuals of grab samples resemble one another more than do individuals of random samples, it follows (by a simple mathematical argument) that the means of grab samples resemble one another less than the means of random samples of the same size. From a grab sample, therefore, we tend to underestimate the variability in the population, although we should have to overestimate it in order to obtain valid estimates of variability of grab sample means by substituting such an estimate into the formula for the variability of means of simple random samples. Thus using simple random sample formulas for grab sample means introduces a double bias, both parts of which lead to an unwarranted appearance of higher stability." (Frederick Mosteller et al, "Principles of Sampling", Journal of the American Statistical Association Vol. 49 (265), 1954)

"Weighing a sample appropriately is no more fudging the data than is correcting a gas volume for barometric pressure." (Frederick Mosteller et al, "Principles of Sampling", Journal of the American Statistical Association Vol. 49 (265), 1954)

"A primary goal of any learning model is to predict correctly the learning curve - proportions of correct responses versus trials. Almost any sensible model with two or three free parameters, however, can closely fit the curve, and so other criteria must be invoked when one is comparing several models." (Robert R Bush & Frederick Mosteller, "A Comparison of Eight Models?", Studies in Mathematical Learning Theory, 1959)

"A satisfactory prediction of the sequential properties of learning data from a single experiment is by no means a final test of a model. Numerous other criteria - and some more demanding - can be specified. For example, a model with specific numerical parameter values should be invariant to changes in independent variables that explicitly enter in the model." (Robert R Bush & Frederick Mosteller,"A Comparison of Eight Models?", Studies in Mathematical Learning Theory, 1959)

"In the testing of a scientific model or theory, one rarely has a general measure of goodness-of-fit, a universal yardstick by which one accepts or rejects the model. Indeed, science does not and should not work this way; a theory is kept until a better one is found. One way that science does work is by comparing two or more theories to determine their relative merits in handling relevant data."(Robert R Bush & Frederick Mosteller, "A Comparison of Eight Models?", Studies in Mathematical Learning Theory, 1959)

"In a problem, the great thing is the challenge. A problem can be challenging for many reasons: because the subject matter is intriguing, because the answer defies unsophisticated intuition, because it illustrates an important principle, because of its vast generality, because of its difficulty, because of a clever solution, or even because of the simplicity or beauty of the answer." (Frederick Mosteller, "Fifty Challenging Problems in Probability with Solutions", 1965)

"Using data from the population as it stands is a dangerous substitute for testing." (Frederick Mosteller & Gale Mosteller, "New Statistical Methods in Public Policy. Part I: Experimentation", Journal of Contemporary Business 8, 1979)

"Although we often hear that data speak for themselves, their voices can be soft and sly." (Frederick Mosteller, "Beginning Statistics with Data Analysis", 1983)

"The law of truly large numbers states: With a large enough sample, any outrageous thing is likely to happen." (Frederick Mosteller, "Methods for Studying Coincidences", Journal of the American Statistical Association Vol. 84, 1989)

"It is easy to lie with statistics, but easier to lie without them [...]" (Frederick Mosteller)

03 August 2019

William E Deming - Collected Quotes

“It is important to realize that it is not the one measurement, alone, but its relation to the rest of the sequence that is of interest.” (William E Deming, “Statistical Adjustment of Data”, 1938) 
 
“The definition of random in terms of a physical operation is notoriously without effect on the mathematical operations of statistical theory because so far as these mathematical operations are concerned random is purely and simply an undefined term.” (Walter A Shewhart & William E Deming, “Statistical Method from the Viewpoint of Quality Control”, 1939)

"Scientific data are not taken for museum purposes; they are taken as a basis for doing something. If nothing is to be done with the data, then there is no use in collecting any. The ultimate purpose of taking data is to provide a basis for action or a recommendation for action. The step intermediate between the collection of data and the action is prediction." (William E Deming, "On a Classification of the Problems of Statistical Inference", Journal of the American Statistical Association Vol. 37 (218), 1942)

”Experience without theory teaches nothing.” (William E Deming, “Out of the Crisis”, 1986)
 
“It is important to realize that it is not the one measurement, alone, but its relation to the rest of the sequence that is of interest.” (William E Deming, “Statistical Adjustment of Data”, 1943)
 
“Sampling is the science and art of controlling and measuring the reliability of useful statistical information through the theory of probability.” (William E Deming, “Some Theory of Sampling”, 1950)

"We must know more about a plan than the probabilities of selection. We must know also the procedure by which to draw the sampling units, and the formula or procedure by which to calculate the estimate." (William E Deming, "Sample Design in Business Research", 1960) 
 
 “Experience by itself teaches nothing [...] Without theory, experience has no meaning. Without theory, one has no questions to ask. Hence without theory there is no learning.” (William E Deming, “The New Economics for Industry, Government, Education”, 1993)
 
“Knowledge is theory. We should be thankful if action of management is based on theory. Knowledge has temporal spread. Information is not knowledge. The world is drowning in information but is slow in acquisition of knowledge. There is no substitute for knowledge.” (William E Deming, “The New Economics for Industry, Government, Education”, 1993) 
 
“What is a system? A system is a network of interdependent components that work together to try to accomplish the aim of the system. A system must have an aim. Without an aim, there is no system. The aim of the system must be clear to everyone in the system. The aim must include plans for the future. The aim is a value judgment.” (William E Deming, “The New Economics for Industry, Government, Education”, 1993)
 
"The only useful function of a statistician is to make predictions, and thus to provide a basis for action." (William E Deming)
Related Posts Plugin for WordPress, Blogger...

On Leonhard Euler

"I have been able to solve a few problems of mathematical physics on which the greatest mathematicians since Euler have struggled in va...