Showing posts with label perception. Show all posts
Showing posts with label perception. Show all posts

29 January 2022

On Networks (1970-1979)

"Nature is a network of happenings that do not unroll like a red carpet into time, but are intertwined between every part of the world; and we are among those parts. In this nexus, we cannot reach certainty because it is not there to be reached; it goes with the wrong model, and the certain answers ironically are the wrong answers. Certainty is a demand that is made by philosophers who contemplate the world from outside; and scientific knowledge is knowledge for action, not contemplation. There is no God’s eye view of nature, in relativity, or in any science: only a man’s eye view." (Jacob Bronowski, "The Identity of Man", 1972)

"In the province of the mind, what one believes to be true is true or becomes true, within certain limits to be found experientially and experimentally. These limits are further beliefs to be transcended. In the mind, there are no limit. […] In the province of connected minds, what the network believes to be true, either is true or becomes true within certain limits to be found experientially and experimentally. These limits are further beliefs to be transcended. In the network's mind there are no limits." (John C Lilly, "The Human Biocomputer", 1974)

"As with any graphic, networks are used in order to discover pertinent troups of to inform others of the groups and structures discovered. It is a good means of displaying structures, However, it ceases to be a means of discovery when the elements are numerous. The figure rapidly becomes complex, illegible and untransformable." (Jacques Bertin, "Graphics and graphic information processing", 1977)

"An autopoietic system is organized (defined as a unity) as a network of processes of production (transformation and destruction) of components that produces the components that: (a) through their interactions and transformations continuously regenerate and realize the network of processes (relations) that produce them and, (b) constitute it (the machine) as a concrete unity in the space in which they exist by specifying the topological domain of its realization as such a network." (Francisco Varela, "Principles of Biological Autonomy", 1979)

"Information is recorded in vast interconnecting networks. Each idea or image has hundreds, perhaps thousands, of associations and is connected to numerous other points in the mental network." (Peter Russell, "The Brain Book: Know Your Own Mind and How to Use it", 1979)

14 September 2021

On Perception: The Filtering Mind

"Nothing is easier than self-deceit. For what each man wishes, that he also believes to be true." (Demosthenes, "Olynthiac", 349 BC)

"Men willingly believe what they wish to be true." (Julius Caesar,"De Bello Gallico", Book III, 58–49 BC)

"Man prefers to believe what he prefers to be true." (Francis Bacon,"Novum Organum", 1620)

"The human understanding resembles not a dry light, but admits a tincture of the will and passions, which generate their own system accordingly; for man always believes more readily that which he prefers." (Sir Francis Bacon, "Novum Organum", 1620)

"People almost invariably arrive at their beliefs not on the basis of proof but on the basis of what they find attractive." (Blaise Pascal, "De l'Art de persuader" ["On the Art of Persuasion"], 1658)

"It is hard to prevent oneself from believing what one so keenly desires, and who can doubt that the interest we have in admitting or denying the reality of the Judgement to come determines the faith of most men in accordance with their hopes and fears." (Jean-Jacques Rousseau,"Reveries of the Solitary Walker", 1782)

"Because of the extended time image and the extended relationship images, man is capable of ‘rational behavior,’ that is to say, his response is not to an immediate stimulus but to an image of the future filtered through an elaborate value system.  His image contains not only what is, but what might be." (Kenneth E Boulding, "The Image: Knowledge in life and society", 1956)

"We say the map is different from the territory. But what is the territory? Operationally, somebody went out with a retina or a measuring stick and made representations which were then put on paper. What is on the paper map is a representation of what was in the retinal representation of the man who made the map; and as you push the question back, what you find is an infinite regress, an infinite series of maps. The territory never gets in at all. […] Always, the process of representation will filter it out so that the mental world is only maps of maps, ad infinitum." (Gregory Bateson, "Steps to an Ecology of Mind", 1972)

"In the province of the mind, what one believes to be true is true or becomes true, within certain limits to be found experientially and experimentally. These limits are further beliefs to be transcended. In the mind, there are no limit. […] In the province of connected minds, what the network believes to be true, either is true or becomes true within certain limits to be found experientially and experimentally. These limits are further beliefs to be transcended. In the network's mind there are no limits." (John C Lilly, "The Human Biocomputer", 1974)

"Nature is not ‘given’ to us - our minds are never virgin in front of reality. Whatever we say we see or observe is biased by what we already know, think, believe, or wish to see. Some of these thoughts, beliefs and knowledge can function as an obstacle to our understanding of the phenomena." (Anna Sierpinska, "Understanding in Mathematics", 1994)

"The abstractions of science are stereotypes, as two-dimensional and as potentially misleading as everyday stereotypes. And yet they are as necessary to the process of understanding as filtering is to the process of perception." (K C Cole, "First You Build a Cloud and Other Reflections on Physics as a Way of Life", 1999)

"We all would like to know more and, at the same time, to receive less information. In fact, the problem of a worker in today's knowledge industry is not the scarcity of information but its excess. The same holds for professionals: just think of a physician or an executive, constantly bombarded by information that is at best irrelevant. In order to learn anything we need time. And to make time we must use information filters allowing us to ignore most of the information aimed at us. We must ignore much to learn a little." (Mario Bunge, "Philosophy in Crisis: The Need for Reconstruction", 2001)

"The receiver decodes the symbols to interpret the meaning of the message. Encoding and decoding are potential sources for communication errors because knowledge, attitudes, and context act as filters and create noise when translating from symbols to meaning. Finally, feedback occurs when the receiver responds to the sender’s communication with a return message. Without feedback, the communication is one-way; with feedback, it is two-way. Feedback is a powerful aid to communication effectiveness because it enables the sender to determine whether the receiver correctly interpreted the message." (Richard L Daft & Dorothy Marcic, "Understanding Management" 5th Ed., 2006)

"Your mental models shape the way you see the world. They help you to quickly make sense of the noises that filter in from outside, but they can also limit your ability to see the true picture." (Colin Cook & Yoram R Wind, "The Power of Impossible Thinking: Transform the Business of Your Life and the Life of Your Business", 2006)

"Great stories agree with our worldview. The best stories don't teach people anything new. Instead the best stories agree with what the audience already believes and makes the members of the audience feel smart and secure when reminded how right they were in the thirst place." (Seth Godin, "All Marketers are Liars", 2009)

"Actually, around 80% of the data we use to make decisions is already in our heads before we engage with a situation. Our power to perceive is governed and limited by cognitive filters, sometimes termed our ‘mental model’. Mental models are formed as a result of past experience, knowledge and attitudes. They are deeply ingrained, often subconscious, structures that limit what we perceive and also colour our interpretation of supposed facts." (Robina Chatham & Brian Sutton, "Changing the IT Leader’s Mindset", 2010) 

"[…] our strong mental models tend to make us blind to certain possibilities, and therefore we unknowingly engage in biased listening. Whenever we interpret information, we subconsciously access three filters based upon how we feel about the content, the information source and situation (or context) in which we receive the information." (Robina Chatham & Brian Sutton, "Changing the IT Leader’s Mindset", 2010)

"Perception and memory are imprecise filters of information, and the way in which information is presented, that is, the frame, influences how it is received. Because too much information is difficult to deal with, people have developed shortcuts or heuristics in order to come up with reasonable decisions. Unfortunately, sometimes these heuristics lead to bias, especially when used outside their natural domains." (Lucy F Ackert & Richard Deaves, "Behavioral Finance: Psychology, Decision-Making, and Markets", 2010)

"When people believe a conclusion is true, they are also very likely to believe arguments that appear to support it, even when these arguments are unsound." (Daniel Kahneman, "Thinking, Fast and Slow", 2011)

"Mental models bind our awareness within a particular scaffold and then selectively can filter the content we subsequently receive. Through recalibration using revised mental models, we argue, we cultivate strategies anew, creating new habits, and galvanizing more intentional and evolved mental models. This recalibration often entails developing a strong sense of self and self-worth, realizing that each of us has a range of moral choices that may deviate from those in authority, and moral imagination." (Patricia H Werhane et al, "Obstacles to Ethical: Decision-Making Mental Models, Milgram and the Problem of Obedience", 2013)

"In the absence of clear information - in the absence of reliable statistics - people did what they had always done: filtered available information through the lens of their worldview." (Zachary Karabell, "The Leading Indicators: A short history of the numbers that rule our world", 2014)

"We are genetically predisposed to look for patterns and to believe that the patterns we observe are meaningful. […] Don’t be fooled into thinking that a pattern is proof. We need a logical, persuasive explanation and we need to test the explanation with fresh data." (Gary Smith, "Standard Deviations", 2014)

"Images are generally resistant to change and ignore messages that do not conform to their internal settings. Sometimes, however, they do react and can alter in an incremental or even revolutionary manner. Humans can talk about and share their images and, in the symbolic universe they create, reflect upon what is and what might be." (Michael C Jackson, "Critical Systems Thinking and the Management of Complexity", 2019)

"Confirmation bias is the tendency to notice, believe, and share information that is consistent with our preexisting beliefs. When a claim confirms our beliefs about the world, we are more prone to accept it as true and less inclined to challenge it as possibly false." (Carl T Bergstrom & Jevin D West, "Calling Bullshit: The Art of Skepticism in a Data-Driven World", 2020)

"The contradiction between what we see with our own eyes and what the statistics claim can be very real. […] The truth is more complicated. Our personal experiences should not be dismissed along with our feelings, at least not without further thought. Sometimes the statistics give us a vastly better way to understand the world; sometimes they mislead us. We need to be wise enough to figure out when the statistics are in conflict with everyday experience - and in those cases, which to believe." (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)

"We filter new information. If it accords with what we expect, we’ll be more likely to accept it. […] Our brains are always trying to make sense of the world around us based on incomplete information. The brain makes predictions about what it expects, and tends to fill in the gaps, often based on surprisingly sparse data." (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)

"[…] mathematicians and poets are people who believe in the power of words, of concepts and giving names to concepts." (Cédric Villani)

"Nothing is so easy as to deceive one's self; for what we wish, that we readily believe." (Democritus)

"The human brain is a complex organ with the wonderful power of enabling man to find reasons for continuing to believe whatever it is that he wants to believe." (Voltaire)

17 June 2021

On Knowledge (-1699)

"In all disciplines in which there is systematic knowledge of things with principles, causes, or elements, it arises from a grasp of those: we think we have knowledge of a thing when we have found its primary causes and principles, and followed it back to its elements." (Aristotle, "Physics", cca. 350 BC)

"Thinking is different from perceiving and is held to be in part imagination, in part judgement: we must therefore first mark off the sphere of imagination and then speak of judgement. If then imagination is that in virtue of which an image arises for us, excluding metaphorical uses of the term, is it a single faculty or disposition relative to images, in virtue of which we discriminate and are either in error or not? The faculties in virtue of which we do this are sense, opinion, knowledge, thought." (Aristotle, "De Anima", cca. 350 BC)

"Knowledge, then, is a state of capacity to demonstrate, and has the other limiting characteristics which we specify in the Analytics; for it is when one believes in a certain way and the principles are known to him that he has knowledge, since if they are not better known to him than the conclusion, he will have his knowledge only on the basis of some concomitant." (Aristotle," Nicomachean Ethics", cca. 340 BC)

"What we know is not capable of being otherwise; of things capable of being otherwise we do not know, when they have passed outsideour observation, whether they exist or not. Therefore the object of knowledge is of necessity. Therefore it is eternal; for things that are of necessity in the unqualified sense are all eternal; and things that are eternal are ungenerated and imperishable. " (Aristotle, "Nicomachean Ethics", cca. 340 BC)

"We can get some idea of a whole from a part, but never knowledge or exact opinion. Special histories therefore contribute very little to the knowledge of the whole and conviction of its truth. It is only indeed by study of the interconnexion of all the particulars, their resemblances and differences, that we are enabled at least to make a general survey, and thus derive both benefit and pleasure from history." (Polybius, "The Histories", cca. 150 BC)

"The mathematician speculates the causes of a certain sensible effect, without considering its actual existence; for the contemplation of universals excludes the knowledge of particulars; and he whose intellectual eye is fixed on that which is general and comprehensive, will think but little of that which is sensible and singular." (Proclus Lycaeus, cca 5th century)

"All knowledge or cognition possessed by creatures is limited. Infinite knowledge belongs solely to God, because of His infinite nature." (John of Salisbury, "Metalogicon", 1159)

"All things have a way of adding up together, so that one will become more proficient in any proposed branch of learning to the extent that he has mastered neighboring and related departments of knowledge." (John of Salisbury, "Metalogicon", 1159)

"In our acquisition of [scientific] knowledge, investigation is the first step, and comes before comprehension, analysis, and retention. Innate ability, although it proceeds from nature, is fostered by study and exercise. What is difficult when we first try it, becomes easier after assiduous practice, and once the rules for doing it are mastered, very easy, unless languor creeps in, through lapse of use or carelessness, and impedes our efficiency. This, in short, is how all the arts have originated: Nature, the first fundamental, begets the habit and practice of study, which proceeds to provide an art, and the latter, in turn, finally furnishes the faculty whereof we speak. Natural ability is accordingly effective. So, too, is exercise. And memory likewise, is effective, when employed by the two aforesaid. With the help of the foregoing, reason waxes strong, and produces the arts, which are proportionate to [man’s] natural talents." (John of Salisbury, "Metalogicon", 1159)

"There are four great sciences, without which the other sciences cannot be known nor a knowledge of things secured […] Of these sciences the gate and key is mathematics […] He who is ignorant of this [mathematics] cannot know the other sciences nor the affairs of this world." (Roger Bacon, "Opus Majus", 1267)

"There are two modes of acquiring knowledge, namely, by reasoning and experience. Reasoning draws a conclusion and makes us grant the conclusion, but does not make the conclusion certain, nor does it remove doubt so that the mind may rest on the intuition of truth unless the mind discovers it by the path of experience." (Roger Bacon, "Opus Majus", 1267)

"That faculty which perceives and recognizes the noble proportions in what is given to the senses, and in other things situated outside itself, must be ascribed to the soul. It lies very close to the faculty which supplies formal schemata to the senses, or deeper still, and thus adjacent to the purely vital power of the soul, which does not think discursively […] Now it might be asked how this faculty of the soul, which does not engage in conceptual thinking, and can therefore have no proper knowledge of harmonic relations, should be capable of recognizing what is given in the outside world. For to recognize is to compare the sense perception outside with the original pictures inside, and to judge that it conforms to them." (Johannes Kepler, "Harmonices Mundi" ["Harmony of the World"] , 1619)

"Knowledge being to be had only of visible and certain truth, error is not a fault of our knowledge, but a mistake of our judgment, giving assent to that which is not true." (John Locke, "An Essay Concerning Human Understanding", 1689)

"[…] the highest probability amounts not to certainty, without which there can be no true knowledge." (John Locke, "An Essay Concerning Human Understanding", 1689)

14 June 2021

On Imagination (1750-1799)

"The imagination in a mathematician who creates makes no less difference than in a poet who invents […]." (Jean Le Rond d'Alembert, "Discours Preliminaire de L'Encyclopedie", 1751)

"Thus, metaphysics and mathematics are, among all the sciences that belong to reason, those in which imagination has the greatest role." (Jean Le Rond d'Alembert, "Discours Preliminaire de L'Encyclopedie", 1751)

"Things which do not now exist in the mind itself, can only be perceived, remembered, or imagined, by means of the ideas or images in the mind, which are the immediate objects of perception, remembrance, and imagination." (Thomas Reid, "An Inquiry into the Human Mind on the Principles", 1764)

"Men always fool themselves when they give up experience for systems born of the imagination. Man is the work of nature, he exists in nature, he is subject to its laws, he can not break free, he can not leave even in thought; it is in vain that his spirit wants to soar beyond the bounds of the visible world, he is always forced to return." (Paul-Henri T d’ Holbach, "Système de la Nature", 1770)

"Psychologists have hitherto failed to realize that imagination is a necessary ingredient of perception itself." (Immanuel Kant, "Critique of Pure Reason", 1781)

"The schema is in itself always a product of imagination. Since, however, the synthesis of imagination aims at no special intuition, but only at unity in the determination of sensibility, the schema has to be distinguished from the image." (Immanuel Kant," Critique of Pure Reason", 1781)

"There are conceptions which may be called fancy pictures. They are commonly called creatures of fancy, or of imagination. They are not the copies of any original that exists, but are originals themselves […]. They were conceived by their creators, and may be conceived by others, but they never existed. We do not ascribe the qualities of true or false to them, because they are not accompanied with any belief, nor do they imply any affirmation or negation." (Thomas Reid,"Essays on the Intellectual Powers of Man", 1785)

"The moment a person forms a theory, his imagination sees, in every object, only the traits which favor that theory." (Thomas Jefferson, [letter to Charles Thompson] 1787)

"Conjectures in philosophy are termed hypotheses or theories; and the investigation of an hypothesis founded on some slight probability, which accounts for many appearances in nature, has too often been considered as the highest attainment of a philosopher. If the hypothesis (sic) hangs well together, is embellished with a lively imagination, and serves to account for common appearances - it is considered by many, as having all the qualities that should recommend it to our belief, and all that ought to be required in a philosophical system." (George Adams, "Lectures on Natural and Experimental Philosophy" Vol. 1, 1794)

"Wit is the appearance, the external flash of imagination. Thus its divinity, and the witty character of mysticism." (K W Friedrich von Schlegel, "Dialogue on Poetry and Literary Aphorisms", [Aphorism 26] 1797) 

"The imagination is an eye where images remain forever." (Joseph Joubert, [Letter to Revd. Dr. Trusler] 1799)

Previous Post <<||>> Next Post

On Puzzles (1990-1999)

"The voyage of discovery into our own solar system has taken us from clockwork precision into chaos and complexity. This still unfinished journey has not been easy, characterized as it is by twists, turns, and surprises that mirror the intricacies of the human mind at work on a profound puzzle. Much remains a mystery. We have found chaos, but what it means and what its relevance is to our place in the universe remains shrouded in a seemingly impenetrable cloak of mathematical uncertainty." (Ivars Peterson, "Newton’s Clock", 1993)

"Each of nature's patterns is a puzzle, nearly always a deep one. Mathematics is brilliant at helping us to solve puzzles. It is a more or less systematic way of digging out the rules and structures that lie behind some observed pattern or regularity, and then using those rules and structures to explain what's going on." (Ian Stewart, "Nature's Numbers: The unreal reality of mathematics", 1995)

"However mathematics starts, whether it is in counting and measuring in everyday life, or in puzzles and riddles, or in scientific queries about projectiles, floating bodies, levers and balances, or magnetic lines of force, it eventually becomes detached from its roots and develops a life of its own. It becomes more powerful, because it can be applied not just to the situations in which it originated but to all other comparable situations. It also becomes more abstract, and more game-like." (David Wells, "You Are a Mathematician: A wise and witty introduction to the joy of numbers", 1995)

"No, nature is, in its own subtle way, simple. However, those simplicities do not present themselves to us directly. Instead, nature leaves clues for the mathematical detectives to puzzle over. It's a fascinating game, even to a spectator. And it's an absolutely irresistible one if you are a mathematical Sherlock Holmes." (Ian Stewart, "Nature's Numbers: The unreal reality of mathematics", 1995)

"Puzzle composers share another feature with mathematicians. They know that, generally speaking, the simpler a puzzle is to express, the more attractive it is likely to be found: similarly, simplicity is for both a desirable feature of the solution. Especially satisfying solutions are often described as 'elegant', a word that - no surprise here - is also used by scientists, engineers and designers, indeed by anyone with a problem to solve. However, simplicity is by no means the only reward of success. Far from it! Mathematicians (and scientists and others) can reasonably expect two further returns: they are (in no particular order) firstly the power to do things, and secondly the perception of connections which were never before suspected, leading in turn to the insight and illumination that mathematicians expect from their best arguments." (David Wells, "You Are a Mathematician: A wise and witty introduction to the joy of numbers", 1995) 

"When we visually perceive the world, we do not just process information; we have a subjective experience of color, shape, and depth. We have experiences associated with other senses (think of auditory experiences of music, or the ineffable nature of smell experiences), with bodily sensations (e.g., pains, tickles, and orgasms), with mental imagery (e.g., the colored shapes that appear when one tubs one's eyes), with emotion (the sparkle of happiness, the intensity of anger, the weight of despair), and with the stream of conscious thought." (David Chalmers, "The Puzzle of Conscious Experience", Scientific American, 1995)

"The art of science is knowing which observations to ignore and which are the key to the puzzle." (Edward W Kolb, "Blind Watchers of the Sky", 1996)

"Most people think of science as a series of steps forged in concrete, but it’s not. It’s a puzzle, and not all of the pieces will ever be firmly in place. When you’re able to fit some of the together, to see an answer, it’s thrilling." (Nora Roberts, "Homeport", 1998)

"A vision is a clear mental picture of a desired future outcome. If you have ever put together a large 1,000-piece jigsaw puzzle, the chances are you used the picture on the top of the puzzle box to guide the placement of the pieces. That picture on the top of the box is the end result or the vision of what you are trying to turn into a reality. It is much more difficult - if not impossible - to put the jigsaw puzzle together without ever looking at the picture." (Jane Flaherty & Peter B Stark, "The Manager's Pocket Guide to Leadership Skills", 1999)

"Accurate estimates depend at least as much upon the mental model used in forming the picture as upon the number of pieces of the puzzle that have been collected." (Richards J. Heuer Jr, "Psychology of Intelligence Analysis", 1999)

03 June 2021

On Continuity XI (Thought II)

"The function of man’s highest faculty, his reason, consists precisely of the continuous limitation of infinity, the breaking up of infinity into convenient, easily digestible portions - differentials. This is precisely what lends my field, mathematics, its divine beauty." (Yevgeny Zamiatin, "We", 1924)

"Rationality consists [of] the continuous adaptation of our language to our continually expanding world, and metaphor is one of the chief means by which this is accomplished." (Mary B Hesse, "Models and Analogies in Science", 1966)

"Truth is a totality, the sum of many overlapping partial images. History, on the other hand, sacrifices totality in the interest of continuity." (Edmund Leach, "Brain-Twister", 1967)

"[…] the distinction between rigorous thinking and more vague ‘imaginings’; even in mathematics itself, all is not a question of rigor, but rather, at the start, of reasoned intuition and imagination, and, also, repeated guessing. After all, most thinking is a synthesis or juxtaposition of advances along a line of syllogisms - perhaps in a continuous and persistent 'forward' movement, with searching, so to speak ‘sideways’, in directions which are not necessarily present from the very beginning and which I describe as ‘sending out exploratory patrols’ and trying alternative routes." (Stanislaw M Ulam, "Adventures of a Mathematician", 1976)

"I shall here present the view that numbers, even whole numbers, are words, parts of speech, and that mathematics is their grammar. Numbers were therefore invented by people in the same sense that language, both written and spoken, was invented. Grammar is also an invention. Words and numbers have no existence separate from the people who use them. Knowledge of mathematics is transmitted from one generation to another, and it changes in the same slow way that language changes. Continuity is provided by the process of oral or written transmission." (Carl Eckart, "Our Modern Idol: Mathematical Science", 1984)

"To form a mental picture of the event, the knowledge developer attempts to integrate his or her perception of the situation with the expert’s perception. That mental picture is then recorded. What happens is a continuous shuttle process; the knowledge developer mentally moves back and forth from the initial impression of the event to the later evaluation of the event. What is finally recorded is the evaluation made during this retrospective period. Because a time lapse can make details of a situation less clear, the information is not always valid." (Elias M Awad, "Knowledge Management", 2003)

"It is from this continuousness of thought and perception that the scientist, like the writer, receives the crucial flash of insight out of which a piece of work is conceived and executed. And the scientist (again like the writer) is grateful when the insight comes, because insight is the necessary catalyst through which the abstract is made concrete, intuition be given language, language provides specificity, and real work can go forward." (Vivian Gornick, "Women in Science: Then and Now", 2009)

01 June 2021

On Imagination (-1699)

"Sometimes a thing is perceived [via sense-perception] when it is observed; then it is imagined, when it is absent [in reality] through the representation of its form inside, Sense-perception grasps [the concept] insofar as it is buried in these accidents that cling to it because of the matter out of which it is made without abstracting it from [matter], and it grasps it only by means of a connection through position [ that exists] between its perception and its matter. It is for this reason that the form of [the thing] is not represented in the external sense when [sensation] ceases. As to the internal [faculty of] imagination, it imagines [the concept] together with these accidents, without being able to entirely abstract it from them. Still, [imagination] abstracts it from the afore-mentioned connection [through position] on which sense-perception depends, so that [imagination] represents the form [of the thing] despite the absence of the form's [outside] carrier." (Avicenna Latinus [Ibn Sina], "Pointer and Reminders", cca. 1030)

"Imagination is accordingly the first activity [movement] of the soul after it is subjected to external stimulation. Imagination  either formulates second judgment, or brings back first judgment by recollection." (John of Salisbury, "Metalogicon", 1159)

"The objection we are dealing with argues from the standpoint of an agent that presupposes time and acts in time, but did not institute time. Hence the question about 'why God's eternal will produces an effect now and and not earlier' presupposes that time exists; for 'now' and 'earlier' are segments of time. With regard to the universal production of things, among which time is also to be counted, we should not ask, 'Why now and not earlier?' Rather we should ask: 'Why did God wish this much time to intervene?' And this depends on the divine will, which is perfectly free to assign this or any other quantity to time. The same may be noted with respect to the dimensional quantity of the world. No one asks why God located the material world in such and such a place rather than higher up or lower down or in some other position; for there is no place outside the world. The fact that God portioned out so much quantity to the world that no part of it would be beyond the place occupied in some other locality, depends on the divine will. However, although there was no time prior to the world and no place outside the world, we speak as if there were. Thus we say that before the world existed there was nothing except God, and that there is no body lying outside the world. But in thus speaking of 'before' and 'outside,' we have in mind nothing but time and place as they exist in our imagination." (Thomas Aquinas, "Compendium Theologiae" ["Compendium of Theology"], cca. 1265 [unfinished])

"[…] the painter cannot produce any form or figure […] if first this form or figure is not imagined and reduced into a mental image (idea) by the inward wits. And to paint, one needs acute senses and a good imagination with which one can get to know the things one sees in such a way that, once these things are not present anymore and transformed into mental images (fantasmi), they can be presented to the intellect. In the second stage, the intellect by means of its judgement puts these things together and, finally, in the third stage the intellect turns these mental images […] into a finished composition which it afterwards represents in painting by means of its ability to cause movement in the body." (Romano Alberti, "Della nobiltà della Pittura", 1585)

"God forbid that we should give out a dream of our own imagination for a pattern of the world." (Francis Bacon, "The Great Instauration", 1620)

"From all this I am beginning to have a rather better understanding of what I am. But it still appears - and I cannot stop thinking this - that the corporeal things of which images are formed in my thought, and which the senses investigate, are known with much more distinctness than this puzzling 'I' which cannot be pictured in the imagination." (René Descartes, "Meditations" II, 1641)

"For after the object is removed, or the eye shut, we still retain an image of the thing seen, though more obscure than when we see it. And this is it the Latins call imagination, from the image made in seeing, and apply the same, though improperly, to all the other senses. But the Greeks call it fancy, which signifies appearance, and is as proper to one sense as to another. IMAGINATION, therefore, is nothing but decaying sense; and is found in men and many other living creatures, as well sleeping as waking." (Thomas Hobbes, "Leviathan: The Matter, Form and Power of a Commonwealth  Ecclesiastical and Civil", 1651)

"Measure, time and number are nothing but modes of thought or rather of imagination." (Baruch Spinoza, [Letter to Ludvicus Meyer] 1663)

Previous Post <<||>> Next Post

16 May 2021

On Topology V

"In mathematics, logic, linguistics, and other abstract disciplines, the systems are not assigned to objects. They are defined by an enumeration of the variables, their admissible values, and their algebraic, topological, grammatical, and other properties which, in the given case, determine the relations between the variables under consideration." (George Klir, "An approach to general systems theory", 1969)

"Because of its foundation in topology, catastrophe theory is qualitative, not quantitative. Just as geometry treated the properties of a triangle without regard to its size, so topology deals with properties that have no magnitude, for example, the property of a given point being inside or outside a closed curve or surface. This property is what topologists call 'invariant' -it does not change even when the curve is distorted. A topologist may work with seven-dimensional space, but he does not and cannot measure (in the ordinary sense) along any of those dimensions. The ability to classify and manipulate all types of form is achieved only by giving up concepts such as size, distance, and rate. So while catastrophe theory is well suited to describe and even to predict the shape of processes, its descriptions and predictions are not quantitative like those of theories built upon calculus. Instead, they are rather like maps without a scale: they tell us that there are mountains to the left, a river to the right, and a cliff somewhere ahead, but not how far away each is, or how large." (Alexander Woodcock & Monte Davis, "Catastrophe Theory", 1978)

"Geometry and topology most often deal with geometrical figures, objects realized as a set of points in a Euclidean space (maybe of many dimensions). It is useful to view these objects not as rigid (solid) bodies, but as figures that admit continuous deformation preserving some qualitative properties of the object. Recall that the mapping of one object onto another is called continuous if it can be determined by means of continuous functions in a Cartesian coordinate system in space. The mapping of one figure onto another is called homeomorphism if it is continuous and one-to-one, i.e. establishes a one-to-one correspondence between points of both figures." (Anatolij Fomenko, "Visual Geometry and Topology", 1994)

"Homeomorphism is one of the basic concepts in topology. Homeomorphism, along with the whole topology, is in a sense the basis of spatial perception. When we look at an object, we see, say, a telephone receiver or a ring-shaped roll and first of all pay attention to the geometrical shape (although we do not concentrate on it specially) - an oblong figure thickened at the ends or a round rim with a large hole in the middle. Even if we deliberately concentrate on the shape of the object and forget about its practical application, we do not yet 'see' the essence of the shape. The point is that oblongness, roundness, etc. are metric properties of the object. The topology of the form lies 'beyond them'." (Anatolij Fomenko, "Visual Geometry and Topology", 1994)

"Since geometry is the mathematical idealization of space, a natural way to organize its study is by dimension. First we have points, objects of dimension O. Then come lines and curves, which are one-dimensional objects, followed by two-dimensional surfaces, and so on. A collection of such objects from a given dimension forms what mathematicians call a 'space'. And if there is some notion enabling us to say when two objects are 'nearby' in such a space, then it's called a topological space." (John L Casti, "Five Golden Rules", 1995)

"One of the basic tasks of topology is to learn to distinguish nonhomeomorphic figures. To this end one introduces the class of invariant quantities that do not change under homeomorphic transformations of a given figure. The study of the invariance of topological spaces is connected with the solution of a whole series of complex questions: Can one describe a class of invariants of a given manifold? Is there a set of integral invariants that fully characterizes the topological type of a manifold? and so forth." (Michael I Monastyrsky, "Riemann, Topology, and Physics", 1999)

"Topology studies those characteristics of figures which are preserved under a certain class of continuous transformations. Imagine two figures, a square and a circular disk, made of rubber. Deformations can convert the square into the disk, but without tearing the figure it is impossible to convert the disk by any deformation into an annulus. In topology, this intuitively obvious distinction is formalized." (Michael I Monastyrsky, "Riemann, Topology, and Physics", 1999)

"[...] there is no area of mathematics where thinking abstractly has paid more handsome dividends than in topology, the study of those properties of geometrical objects that remain unchanged when we deform or distort them in a continuous fashion without tearing, cutting, or breaking them." (John L Casti, "Five Golden Rules", 1995)

"At first, topology can seem like an unusually imprecise branch of mathematics. It’s the study of squishy play-dough shapes capable of bending, stretching and compressing without limit. But topologists do have some restrictions: They cannot create or destroy holes within shapes. […] While this might seem like a far cry from the rigors of algebra, a powerful idea called homology helps mathematicians connect these two worlds. […] homology infers an object’s holes from its boundaries, a more precise mathematical concept. To study the holes in an object, mathematicians only need information about its boundaries." (Kelsey Houston-Edwards, "How Mathematicians Use Homology to Make Sense of Topology", Quanta Magazine, 2021) [source]

"In geometry, shapes like circles and polyhedra are rigid objects; the tools of the trade are lengths, angles and areas. But in topology, shapes are flexible things, as if made from rubber. A topologist is free to stretch and twist a shape. Even cutting and gluing are allowed, as long as the cut is precisely reglued. A sphere and a cube are distinct geometric objects, but to a topologist, they’re indistinguishable." (David E Richeson, "Topology 101: The Hole Truth", 2021) [source]

09 May 2021

On Randomness VIII (Events II)

"Our lives today are not conducted in linear terms. They are much more quantified; a stream of random events is taking place." (James G Ballard, [Conversation with George MacBeth on Third Programme - BBC], 1967)

"Events may appear to us to be random, but this could be attributed to human ignorance about the details of the processes involved." (Brain S Everitt, "Chance Rules", 1999)

"That randomness gives rise to innovation and diversity in nature is echoed by the notion that chance is also the source of invention in the arts and everyday affairs in which naturally occurring processes are balanced between tight organization, where redundancy is paramount, and volatility, in which little order is possible. One can argue that there is a difference in kind between the unconscious, and sometimes conscious, choices made by a writer or artist in creating a string of words or musical notes and the accidental succession of events taking place in the natural world. However, it is the perception of ambiguity in a string that matters, and not the process that generated it, whether it be man-made or from nature at large." (Edward Beltrami, "What is Random?: Chaos and Order in Mathematics and Life", 1999)

"The subject of probability begins by assuming that some mechanism of uncertainty is at work giving rise to what is called randomness, but it is not necessary to distinguish between chance that occurs because of some hidden order that may exist and chance that is the result of blind lawlessness. This mechanism, figuratively speaking, churns out a succession of events, each individually unpredictable, or it conspires to produce an unforeseeable outcome each time a large ensemble of possibilities is sampled."  (Edward Beltrami, "What is Random?: Chaos and Order in Mathematics and Life", 1999)

"Random events often come like the raisins in a box of cereal - in groups, streaks, and clusters. And although Fortune is fair in potentialities, she is not fair in outcomes." (Leonard Mlodinow, "The Drunkard’s Walk: How Randomness Rules Our Lives", 2008)

"The outline of our lives, like the candles flame, is continuously coaxed in new directions by a variety of random events that, along with our responses to them, determine our fate." (Leonard Mlodinow, "The Drunkard’s Walk: How Randomness Rules Our Lives", 2008)

"Why is the human need to be in control relevant to a discussion of random patterns? Because if events are random, we are not in control, and if we are in control of events, they are not random. There is therefore a fundamental clash between our need to feel we are in control and our ability to recognize randomness. That clash is one of the principal reasons we misinterpret random events."  (Leonard Mlodinow, "The Drunkard’s Walk: How Randomness Rules Our Lives", 2008)

"Quantum physicists today are reconciled to randomness at the individual event level, but to expect causality to underlie statistical quantum phenomena is reasonable. Suppose a person shakes an ink pen such that ink spots are formed on a white wall, in what appears for all intents and purposes, randomly. Let us further suppose the random ink spots accumulate to form precise pictures of different known persons' faces every time. We will not regard the overall result to be a happenchance; we are apt to suspect there must be a 'method' to the person who is shaking the ink pen." (Ravi Gomatam) [response to Nobel Laureate Steven Weinberg's article "Einstein's Mistakes", Physics Today Vol. 59 (4), 2005]

"We are hardwired to make sense of the world around us - to notice patterns and invent theories to explain these patterns. We underestimate how easily pat - terns can be created by inexplicable random events - by good luck and bad luck." (Gary Smith, "Standard Deviations", 2014)

08 February 2021

On Imagination (BC)

"We invoke the imagination and the intervals that it furnishes, since the form itself is without motion or genesis, indivisible and free of all underlying matter, though the elements latent in the form are produced distinctly and individually on the screen of imagination. What projects the images is the understanding; the source of what is projected is the form in the understanding; and what they are projected in is this 'passive nous' that unfolds in revolution about the partlessness of genuine Nous." (Proclus Lycaeus, "A Commentary on the First Book of Euclid’s Elements", cca 5th century)

"But since we have, in our work on the soul, treated of imagination, and the faculty of imagination is identical with that of sense-perception, though the being of a faculty of imagination is different from that of a faculty of sense-perception; and since imagination is the movement set up by a sensory faculty when actually discharging its function, while a dream appears to be an image (for which occurs in sleep - whether simply or in some particular way - is what we call a dream): it manifestly follows that dreaming is an activity of the faculty of sense-perception, but belongs to this faculty qua imaginative." (Aristotle, "On Dreams", 4th century BC)

"It is obvious then, that memory belongs to that part of the soul to which imagination belongs. […] Just as the picture painted on the panel is at once a picture and a portrait, and though one and the same, is both, yet the essence of the two is not the same, and it is possible to think of it both as a picture and as a portrait, so in the same way we must regard the mental picture within us both as an object of contemplation in itself and as a mental picture of something else […]. Insofar as we consider it in relation to something else, e.g. as a likeness, it is also an aid to memory." (Aristotle, "De Memoria et Reminiscentia" [On Memory and Recollection], 4th century BC)

"For imagination is different from either perceiving or discursive thinking, though it is not found without sensation, or judgement without it. That this activity is not the same kind of thinking as judgement is obvious. For imagining lies within our own power whenever we wish (e.g. we can call up a picture, as in the practice of mnemonics by the use of mental images), but in forming opinions we are not free: we cannot escape the alternative of falsehood or truth." (Aristotle, "De Anima", cca. 350 BC)

"[Imagination is] that in virtue of which we say that an image occurs to us and not as we speak of it metaphorically."  (Aristotle, "De Anima" III, cca. 350 BC)

"Since it seems that there is nothing outside and separate in existence from sensible spatial magnitudes, the objects of thought are in the sensible forms, viz. both the abstract objects and all the states and affections of sensible things. Hence no one can learn or understand anything in the absence of sense, and when the mind is actively aware of anything it is necessarily aware of it along with an image; for images are like sensuous contents except in that they contain no matter. Imagination is different from assertion and denial; for what is true or false involves a synthesis of thoughts. In what will the primary thoughts differ from images? Must we not say that neither these nor even our other thoughts are images, though they necessarily involve them?" (Aristotle, "De Anima", cca. 350 BC)

"Thinking is different from perceiving and is held to be in part imagination, in part judgement: we must therefore first mark off the sphere of imagination and then speak of judgement. If then imagination is that in virtue of which an image arises for us, excluding metaphorical uses of the term, is it a single faculty or disposition relative to images, in virtue of which we discriminate and are either in error or not? The faculties in virtue of which we do this are sense, opinion, knowledge, thought." (Aristotle, "De Anima", cca. 350 BC)

"Imagination (VIKALPA) is a thought based on a mental image describable by words but not based on an object directly observable." (Patanjali, "Yoga Sutra" cca. 500 BC - 400 AD)

Previous Post <<||>> Next Post

19 December 2020

On Randomness IX (Probabilities)

"The most important application of the theory of probability is to what we may call 'chance-like' or 'random' events, or occurrences. These seem to be characterized by a peculiar kind of incalculability which makes one disposed to believe - after many unsuccessful attempts - that all known rational methods of prediction must fail in their case. We have, as it were, the feeling that not a scientist but only a prophet could predict them. And yet, it is just this incalculability that makes us conclude that the calculus of probability can be applied to these events." (Karl R Popper, "The Logic of Scientific Discovery", 1934)

"The classical theory of probability was devoted mainly to a study of the gamble's gain, which is again a random variable; in fact, every random variable can be interpreted as the gain of a real or imaginary gambler in a suitable game." (William Feller, "An Introduction To Probability Theory And Its Applications", 1950)

"To every event defined for the original random walk there corresponds an event of equal probability in the dual random walk, and in this way almost every probability relation has its dual." (William Feller, "An Introduction To Probability Theory And Its Applications", 1950)

“The epistemological value of probability theory is based on the fact that chance phenomena, considered collectively and on a grand scale, create non-random regularity.” (Andrey Kolmogorov, “Limit Distributions for Sums of Independent Random Variables”, 1954)

"The urn model is to be the expression of three postulates: (1) the constancy of a probability distribution, ensured by the solidity of the vessel, (2) the random-character of the choice, ensured by the narrowness of the mouth, which is to prevent visibility of the contents and any consciously selective choice, (3) the independence of successive choices, whenever the drawn balls are put back into the urn. Of course in abstract probability and statistics the word 'choice' can be avoided and all can be done without any reference to such a model. But as soon as the abstract theory is to be applied, random choice plays an essential role."(Hans Freudenthal, "The Concept and the Role of the Model in Mathematics and Natural and Social Sciences", 1961)

"Probability theory is an ideal tool for formalizing uncertainty in situations where class frequencies are known or where evidence is based on outcomes of a sufficiently long series of independent random experiments. Possibility theory, on the other hand, is ideal for formalizing incomplete information expressed in terms of fuzzy propositions." (George Klir, "Fuzzy sets and fuzzy logic", 1995)

"Often, we use the word random loosely to describe something that is disordered, irregular, patternless, or unpredictable. We link it with chance, probability, luck, and coincidence. However, when we examine what we mean by random in various contexts, ambiguities and uncertainties inevitably arise. Tackling the subtleties of randomness allows us to go to the root of what we can understand of the universe we inhabit and helps us to define the limits of what we can know with certainty." (Ivars Peterson, "The Jungles of Randomness: A Mathematical Safari", 1998)

"The subject of probability begins by assuming that some mechanism of uncertainty is at work giving rise to what is called randomness, but it is not necessary to distinguish between chance that occurs because of some hidden order that may exist and chance that is the result of blind lawlessness. This mechanism, figuratively speaking, churns out a succession of events, each individually unpredictable, or it conspires to produce an unforeseeable outcome each time a large ensemble of possibilities is sampled."  (Edward Beltrami, "What is Random?: Chaos and Order in Mathematics and Life", 1999)

"Chance is just as real as causation; both are modes of becoming.  The way to model a random process is to enrich the mathematical theory of probability with a model of a random mechanism. In the sciences, probabilities are never made up or 'elicited' by observing the choices people make, or the bets they are willing to place.  The reason is that, in science and technology, interpreted probability exactifies objective chance, not gut feeling or intuition. No randomness, no probability." (Mario Bunge, "Chasing Reality: Strife over Realism", 2006) 

"[...] according to the quantum theory, randomness is a basic trait of reality, whereas in classical physics it is a derivative property, though an equally objective one. Note, however, that this conclusion follows only under the realist interpretation of probability as the measure of possibility. If, by contrast, one adopts the subjectivist or Bayesian conception of probability as the measure of subjective uncertainty, then randomness is only in the eye of the beholder." (Mario Bunge, "Matter and Mind: A Philosophical Inquiry", 2010)

On Randomness VII (Events I)

"The very events which in their own nature appear most capricious and uncertain, and which in any individual case no attainable degree of knowledge would enable us to foresee, occur, when considerable numbers are taken into account, with a degree of regularity approaching to mathematical." (John S Mills, "A System of Logic", 1862)

"To every event defined for the original random walk there corresponds an event of equal probability in the dual random walk, and in this way almost every probability relation has its dual." (William Feller, "An Introduction To Probability Theory And Its Applications", 1950)

"Perhaps randomness is not merely an adequate description for complex causes that we cannot specify. Perhaps the world really works this way, and many events are uncaused in any conventional sense of the word." (Stephen J Gould, "Hen's Teeth and Horse's Toes", 1983).

"If you perceive the world as some place where things happen at random - random events over which you have sometimes very little control, sometimes fairly good control, but still random events - well, one has to be able to have some idea of how these things behave. […] People who are not used to statistics tend to see things in data - there are random fluctuations which can sometimes delude them - so you have to understand what can happen randomly and try to control whatever can be controlled. You have to expect that you are not going to get a clean-cut answer. So how do you interpret what you get? You do it by statistics." (Lucien LeCam, [interview] 1988)

"Randomness is the very stuff of life, looming large in our everyday experience. […] The fascination of randomness is that it is pervasive, providing the surprising coincidences, bizarre luck, and unexpected twists that color our perception of everyday events." (Edward Beltrami, "What is Random?: Chaos and Order in Mathematics and Life", 1999)

"The subject of probability begins by assuming that some mechanism of uncertainty is at work giving rise to what is called randomness, but it is not necessary to distinguish between chance that occurs because of some hidden order that may exist and chance that is the result of blind lawlessness. This mechanism, figuratively speaking, churns out a succession of events, each individually unpredictable, or it conspires to produce an unforeseeable outcome each time a large ensemble of possibilities is sampled."  (Edward Beltrami, "Chaos and Order in Mathematics and Life", 1999)

"Randomness is a difficult notion for people to accept. When events come in clusters and streaks, people look for explanations and patterns. They refuse to believe that such patterns - which frequently occur in random data - could equally well be derived from tossing a coin. So it is in the stock market as well." (Didier Sornette, "Why Stock Markets Crash: Critical events in complex financial systems", 2003)

"[…] we would like to observe that the butterfly effect lies at the root of many events which we call random. The final result of throwing a dice depends on the position of the hand throwing it, on the air resistance, on the base that the die falls on, and on many other factors. The result appears random because we are not able to take into account all of these factors with sufficient accuracy. Even the tiniest bump on the table and the most imperceptible move of the wrist affect the position in which the die finally lands. It would be reasonable to assume that chaos lies at the root of all random phenomena." (Iwo Białynicki-Birula & Iwona Białynicka-Birula, "Modeling Reality: How Computers Mirror Life", 2004)

"A Black Swan is a highly improbable event with three principal characteristics: It is unpredictable; it carries a massive impact; and, after the fact, we concoct an explanation that makes it appear less random, and more predictable, than it was. […] The Black Swan idea is based on the structure of randomness in empirical reality. [...] the Black Swan is what we leave out of simplification." (Nassim N Taleb, "The Black Swan", 2007)

"Regression toward the mean. That is, in any series of random events an extraordinary event is most likely to be followed, due purely to chance, by a more ordinary one." (Leonard Mlodinow, "The Drunkard’s Walk: How Randomness Rules Our Lives", 2008)

06 December 2020

Mental Models LVI (Conceptual Models III)

"Mere deductive logic, whether you clothe it in mathematical symbols and phraseology or whether you enlarge its scope into a more general symbolic technique, can never take the place of clear relevant initial concepts of the meaning of your symbols, and among symbols I include words. If you are dealing with nature, your meanings must directly relate to the immediate facts of observation. We have to analyse first the most general characteristics of things observed, and then the more casual contingent occurrences. There can be no true physical science which looks first to mathematics for the provision of a conceptual model. Such a procedure is to repeat the errors of the logicians of the middle-ages." (Alfred N Whitehead, "Principle of Relativity", 1922)

"The 'physical' does not mean any particular kind of reality, but a particular kind of denoting reality, namely a system of concepts in the natural sciences which is necessary for the cognition of reality. 'The physical' should not be interpreted wrongly as an attribute of one part of reality, but not of the other ; it is rather a word denoting a kind of conceptual construction, as, e.g., the markers 'geographical' or 'mathematical', which denote not any distinct properties of real things, but always merely a manner of presenting them by means of ideas." (Moritz Schlick, "Allgemeine Erkenntnislehre", 1925)

"The rule is derived inductively from experience, therefore does not have any inner necessity, is always valid only for special cases and can anytime be refuted by opposite facts. On the contrary, the law is a logical relation between conceptual constructions; it is therefore deductible from upper laws and enables the derivation of lower laws; it has as such a logical necessity in concordance with its upper premises; it is not a mere statement of probability, but has a compelling, apodictic logical value once its premises are accepted."(Ludwig von Bertalanffy, "Kritische Theorie der Formbildung", 1928)

"As perceivers we select from all the stimuli falling on our senses only those which interest us, and our interests are governed by a pattern-making tendency, sometimes called a schema." (Mary Douglas, "Purity and Danger", 1966)

"Whether or not a given conceptual model or representation of a physical system happens to be picturable, is irrelevant to the semantics of the theory to which it eventually becomes attached. Picturability is a fortunate psychological occurrence, not a scientific necessity. Few of the models that pass for visual representations are picturable anyhow. For one thing, the model may be and usually is constituted by imperceptible items such as unextended particles and invisible fields. True, a model can be given a graphic representation - but so can any idea as long as symbolic or conventional diagrams are allowed. Diagrams, whether representational or symbolic, are meaningless unless attached to some body of theory. On the other hand theories are in no need of diagrams save for psychological purposes. Let us then keep theoretical models apart from visual analogues."  (Mario Bunge, "Philosophy of Physics", 1973)

"The understanding of a thing begins and ends with some conceptual model of it. The model is the better, the more accurate, and inclusive. But even rough models can be used to guide - or misguide - research." (Bunge A Mario, "Philosophy in Crisis: The Need for Reconstruction", 2001)

"A conceptual model is a mental image of a system, its components, its interactions. It lays the foundation for more elaborate models, such as physical or numerical models. A conceptual model provides a framework in which to think about the workings of a system or about problem solving in general. An ensuing operational model can be no better than its underlying conceptualization." (Henry N Pollack, "Uncertain Science … Uncertain World", 2005)

"[...] a single thing may elicit several appearances, various conceptual models of it, or several plans of action for it, depending on the subject’s abilities and interests." (Mario Bunge, "Chasing Reality: Strife over Realism", 2006)

"Although fiction is not fact, paradoxically we need some fictions, particularly mathematical ideas and highly idealized models, to describe, explain, and predict facts.  This is not because the universe is mathematical, but because our brains invent or use refined and law-abiding fictions, not only for intellectual pleasure but also to construct conceptual models of reality." (Mario Bunge, "Chasing Reality: Strife over Realism", 2006)

"At all events, our world pictures may have components of all three kinds: perceptual, conceptual, and praxiological (action-theoretical).  This is because there are three gates to the outer world: perception, conception, and action. However, ordinarily only one or two of them need be opened: combinations of all three, as in building a house according to a blueprint, are the exception.  We may contemplate a landscape without forming either a conceptual model of it or a plan to act upon it.  And we may build a theoretical model of an imperceptible thing, such as an invisible extrasolar planet, on which we cannot act." (Mario Bunge, "Chasing Reality: Strife over Realism", 2006)

01 December 2020

On Symbols (1940-1949)

"Symbols have a trick of stealing the show away from the thing they stand for." (Henry S Haskins, "Meditations in Wall Street", 1940) 

"We now come to a decisive step of mathematical abstraction: we forget about what the symbols stand for […] The mathematician] need not be idle; there are many operations which he may carry out with these symbols, without ever having to look at the things they stand for." (Hermann Weyl, "The Mathematical Way of Thinking", 1940)

"Nothing is harder to understand than a symbolic work. A symbol always transcends the one who makes use of it and makes him say in reality more than he is aware of expressing." (Albert Camus, "The Myth of Sisyphus", 1942)

"[The power of understanding symbols] issues in an unconscious, spontaneous process of abstraction, which goes on all the time in the human mind: a process of recognizing the concept in any configuration given to experience, and forming a conception accordingly." (Suzanne K Langer, "Philosophy in a New Key: A Study in the Symbolism of Reason, Rite, and Art", 1942)

"It is generally agreed that thought employs symbols such as written or spoken words or tokens; but it is not generally considered whether the whole of thought may not consist of a process of symbolism, nor is the nature of symbolism and its presence or absence in the inorganic world discussed." (Kenneth Craik, "The Nature of Explanation", 1943)

"My hypothesis then is that thought models, or parallels, reality - that its essential feature is not ‘the mind’, ‘the self’, ‘sense-data’, nor propositions but symbolism, and that this symbolism is largely of the same kind as that which is familiar to us in mechanical devices which aid thought and calculation." (Kenneth Craik, "The Nature of Explanation", 1943)

"Thus there are instances of symbolisation in nature; we use such instances as an aid to thinking; there is evidence of similar mechanisms at work in our own sensory and central nervous systems; and the function of such symbolisation is plain. If the organism carries a ’small-scale model’ of external reality and of its own possible actions within its head, it is able to try out various alternatives, conclude which is the best of them, react to future situations before they arise […]" (Kenneth Craik, "The Nature of Explanation", 1943)

"Thus we do not try to prove the existence of the external world – we discover it, because the fundamental power of words or other symbols to represent events [...] permits us to put forward hypotheses and test their truth by reference to experience. [..] A particular type of symbolism may always fail in a particular case, as Euclidean geometry apparently fails to represent stellar space; but if all types of symbolism always failed, we should be unable to recognise any objects or exist at all." (Kenneth Craik, "The Nature of Explanation", 1943)

"Without falling into the trap of attempting a precise definition, we may suggest a theory as to the general nature of symbolism, viz. that it is the ability of processes to parallel or imitate each other, or the fact that they can do so since there are recurrent patterns in reality." (Kenneth Craik, "The Nature of Explanation", 1943)

"Man has [...] discovered a new method of adapting himself to his environment. Between the receptor system and the effector system, which are to be found in all animal species, we find in man a third link which we may describe as the symbolic system." (Ernst Cassirer, "An Essay on Man", 1944)

"A mathematician is not a man who can readily manipulate figures; often he cannot. He is not even a man who can readily perform the transformations of equations by the use of calculus. He is primarily an individual who is skilled in the use of symbolic logic on a high plane, and especially he is a man of intuitive judgment in the choice of the manipulative processes he employs." (Vannevar Bush, "As We May Think", 1945)

"Figures and symbols are closely connected with mathematical thinking, their use assists the mind. […] At any rate, the use of mathematical symbols is similar to the use of words. Mathematical notation appears as a sort of language, une langue bien faite, a language well adapted to its purpose, concise and precise, with rules which, unlike the rules of ordinary grammar, suffer no exception." (George Pólya, "How to solve it", 1945)

"For, in mathematics or symbolic logic, reason can crank out the answer from the symboled equations -even a calculating machine can often do so - but it cannot alone set up the equations. Imagination resides in the words which define and connect the symbols - subtract them from the most aridly rigorous mathematical treatise and all meaning vanishes." (Ralph W Gerard, "The Biological Basis of Imagination", American Thought, 1947)

"When one analyzes the pre-conscious step to concepts, one always finds ideas which consist of 'symbolic images'. The first step to thinking is a painted vision of these inner pictures whose origin cannot be reduced only and firstly to the sensual perception but which are produced by an 'instinct to imagining' and which are re-produced by different individuals independently, i.e. collectively [...] But the archaic image is also the necessary predisposition and the source of a scientific attitude. To a total recognition belong also those images out of which have grown the rational concepts." (Wolfgang Pauli, [Letter to Markus Fierz] 1948)

"Belief has its structures, and its symbols change. Its tradition changes. All the relationships within these forms are inter-dependent. We look at the symbols, we hope to read them, we hope for sharing and communication." (Muriel Rukeyser, "The Life of Poetry", 1949)

"However obvious these facts may appear at first glance, they are actually not so obvious as they seem except when we take special pains to think about the subject. Symbols and things symbolized are independent of each other; nevertheless, we all have a way of feeling as if […] there were necessary connections." (Samuel I Hayakawa, "Language in Thought and Action", 1949)

"Men cannot be treated as units in operations of political arithmetic because they behave like the symbols for zero and the infinite, which dislocate all mathematical operations." (Arthur Koestler, "Crossman", 1949)

"The first of the principles governing symbols is this: The symbol is NOT the thing symbolized; the word is NOT the thing; the map is NOT the territory it stands for." (Samuel I Hayakawa, "Language in Thought and Action", 1949)

30 November 2020

Set Theory I

"[a set is] an embodiment of the idea or concept which we conceive when we regard the arrangement of its parts as a matter of indifference." (Bernard Bolzano, 1847)

"Since the examination of consistency is a task that cannot be avoided, it appears necessary to axiomatize logic itself and to prove that number theory and set theory are only parts of logic. This method was prepared long ago (not least by Frege’s profound investigations); it has been most successfully explained by the acute mathematician and logician Russell. One could regard the completion of this magnificent Russellian enterprise of the axiomatization of logic as the crowning achievement of the work of axiomatization as a whole." (David Hilbert, "Axiomatisches Denken" ["Axiomatic Thinking"], [address] 1917)

"It seems clear that [set theory] violates against the essence of the continuum, which, by its very nature, cannot at all be battered into a single set of elements. Not the relationship of an element to a set, but of a part to a whole ought to be taken as a basis for the analysis of a continuum." (Hermann Weyl, "Reimanns geometrische Ideen, ihre Auswirkungen und ihre Verknüpfung mit der Gruppentheorie", 1925)

"To say that mathematics in general has been reduced to logic hints at some new firming up of mathematics at its foundations. This is misleading. Set theory is less settled and more conjectural than the classical mathematical superstructure than can be founded upon it." (Willard van Orman Quine, "Elementary Logic", 1941)

"The emphasis on mathematical methods seems to be shifted more towards combinatorics and set theory - and away from the algorithm of differential equations which dominates mathematical physics." (John von Neumann & Oskar Morgenstern, "Theory of Games and Economic Behavior", 1944)

"But, despite their remoteness from sense experience, we do have something like a perception of the objects of set theory, as is seen from the fact that the axioms force themselves upon us as being true. I don't see any reason why we should have less confidence in this kind of perception, i.e., in mathematical intuition, than in sense perception, which induces us to build up physical theories and to expect that future sense perception will agree with them and, moreover, to believe that a question not decidable now has meaning and may be decided in future." (Kurt Gödel, "What is Cantor’s Continuum problem?", American Mathematical Monthly 54, 1947)

"Categorical algebra has developed in recent years as an effective method of organizing parts of mathematics. Typically, this sort of organization uses notions such as that of the category G of all groups. [...] This raises the problem of finding some axiomatization of set theory - or of some foundational discipline like set theory - which will be adequate and appropriate to realizing this intent. This problem may turn out to have revolutionary implications vis-`a-vis the accepted views of the role of set theory." (Saunders Mac Lane, "Categorical algebra and set-theoretic foundations", 1967)

"In set theory, perhaps more than in any other branch of mathematics, it is vital to set up a collection of symbolic abbreviations for various logical concepts. Because the basic assumptions of set theory are absolutely minimal, all but the most trivial assertions about sets tend to be logically complex, and a good system of abbreviations helps to make otherwise complex statements."  (Keith Devlin, "Sets, Functions, and Logic: An Introduction to Abstract Mathematics", 1979)

"Set theory is peculiarly important [...] because mathematics can be exhibited as involving nothing but set-theoretical propositions about set-theoretical entities." (David M Armstrong, "A Combinatorial Theory of Possibility", 1989)

"At the basis of the distance concept lies, for example, the concept of convergent point sequence and their defined limits, and one can, by choosing these ideas as those fundamental to point set theory, eliminate the notions of distance." (Felix Hausdorff)

22 November 2020

On Chaos III

"As perceivers we select from all the stimuli falling on our senses only those which interest us, and our interests are governed by a pattern-making tendency, sometimes called a schema. In a chaos of shifting impressions each of us constructs a stable world in which objects have recognisable shapes, are located in depth and have permanence." (Mary Douglas, "Purity and Danger", 1966)

"The term chaos is used in a specific sense where it is an inherently random pattern of behaviour generated by fixed inputs into deterministic (that is fixed) rules (relationships). The rules take the form of non-linear feedback loops. Although the specific path followed by the behaviour so generated is random and hence unpredictable in the long-term, it always has an underlying pattern to it, a 'hidden' pattern, a global pattern or rhythm. That pattern is self-similarity, that is a constant degree of variation, consistent variability, regular irregularity, or more precisely, a constant fractal dimension. Chaos is therefore order (a pattern) within disorder (random behaviour)." (Ralph D Stacey, "The Chaos Frontier: Creative Strategic Control for Business", 1991)

"The term chaos is also used in a general sense to describe the body of chaos theory, the complete sequence of behaviours generated by feed-back rules, the properties of those rules and that behaviour." (Ralph D Stacey, "The Chaos Frontier: Creative Strategic Control for Business", 1991)

"There are many possible definitions of chaos. In fact, there is no general agreement within the scientific community as to what constitutes a chaotic dynamical system." (Robert L Devaney, "A First Course in Chaotic Dynamical Systems: Theory and Experiment", 1992)

"Chaos provides order. Chaotic agitation and motion are needed to create overall, repetitive order. This ‘order through fluctuations’ keeps dynamic markets stable and evolutionary processes robust. In essence, chaos is a phase transition that gives spontaneous energy the means to achieve repetitive and structural order." (Lawrence K Samuels, "Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013)

"Order is not universal. In fact, many chaologists and physicists posit that universal laws are more flexible than first realized, and less rigid - operating in spurts, jumps, and leaps, instead of like clockwork. Chaos prevails over rules and systems because it has the freedom of infinite complexity over the known, unknown, and the unknowable." (Lawrence K Samuels, "Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013)

"Things evolve to evolve. Evolutionary processes are the linchpin of change. These processes of discovery represent a complexity of simple systems that flux in perpetual tension as they teeter at the edge of chaos. This whirlwind of emergence is responsible for the spontaneous order and higher, organized complexity so noticeable in biological evolution - one–celled critters beefing up to become multicellular organisms." (Lawrence K Samuels, "Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013)

21 November 2020

Mental Models LVII

"Thoughts are the images of things, words are of thoughts; and we all know that images and pictures are only so true as they are true representations men and things. […] For poets as well painters think it their business to take likeness of things from their appearance."(Joseph Trapp, "Lectures on Poetry", 1711)

"By reducing imagination to the power of forming images, and by  insisting that no image can be formed except out of the elements furnished by experience, I do not mean to confound imagination with memory; indeed, the frequent occurrence of great strength of memory with comparative feebleness of imagination, would suffice to warn us against such a conclusion." (George H Lewes, "The Principles of Success in Literature", 1865)

"However rapid and remote their flight of thought, it is a succession of images, not of abstractions. The details which give significance, and which by us are seen vaguely as through a vanishing mist, are by them seen in sharp outlines. The image which to us is a mere suggestion, is to them almost as vivid as the object. And it is because they see vividly that they can paint effectively." (George H Lewes, "The Principles of Success in Literature", 1865)

"The strangest and most wonderful constructions in the whole animal world are the amazing, intricate constructions made by the primate Homo sapiens. Each normal individual of this species makes a self. Out of its brain it spins a web of words and deeds, and, like the other creatures, it doesn't have to know what it's doing; it just does it. This web protects it, just like the snail's shell. […] As such, it plays a singularly important role in the ongoing cognitive economy of that living body, because, of all the things in the environment an active body must make mental models of, none is more crucial than the model the agent has of itself." (Daniel Dennett, "Consciousness Explained", 1991)

"[Language comprehension] involves many components of intelligence: recognition of words, decoding them into meanings, segmenting word sequences into grammatical constituents, combining meanings into statements, inferring connections among statements, holding in short-term memory earlier concepts while processing later discourse, inferring the writer’s or speaker’s intentions, schematization of the gist of a passage, and memory retrieval in answering questions about the passage. [… The reader] constructs a mental representation of the situation and actions being described. […] Readers tend to remember the mental model they constructed from a text, rather than the text itself." (Gordon H Bower & Daniel G Morrow, 1990)

"We build mental models that represent significant aspects of our physical and social world, and we manipulate elements of those models when we think, plan, and try to explain events of that world. The ability to construct and manipulate valid models of reality provides humans with our distinctive adaptive advantage; it must be considered one of the crowning achievements of the human intellect." (Gordon H Bower & Daniel G Morrow, 1990)

"[For] us to be able to speak and understand novel sentences, we have to store in our heads not just the words of our language but also the patterns of sentences possible in our language. These patterns, in turn, describe not just patterns of words but also patterns of patterns. Linguists refer to these patterns as the rules of language stored in memory; they refer to the complete collection of rules as the mental grammar of the language, or grammar for short." (Ray Jackendoff, "Patterns in the Mind", 1994)

"When we visually perceive the world, we do not just process information; we have a subjective experience of color, shape, and depth. We have experiences associated with other senses (think of auditory experiences of music, or the ineffable nature of smell experiences), with bodily sensations (e.g., pains, tickles, and orgasms), with mental imagery (e.g., the colored shapes that appear when one tubs one's eyes), with emotion (the sparkle of happiness, the intensity of anger, the weight of despair), and with the stream of conscious thought." (David Chalmers, "The Puzzle of Conscious Experience", Scientific American, 1995)

"Actually, around 80% of the data we use to make decisions is already in our heads before we engage with a situation. Our power to perceive is governed and limited by cognitive filters, sometimes termed our ‘mental model’. Mental models are formed as a result of past experience, knowledge and attitudes. They are deeply ingrained, often subconscious, structures that limit what we perceive and also colour our interpretation of supposed facts." (Robina Chatham & Brian Sutton, "Changing the IT Leader’s Mindset", 2010)

"Mental models are formed over time through a deep enculturation process, so it follows that any attempt to align mental models must focus heavily on collective sense making. Alignment only happens through a process of socialisation; people working together, solving problems together, making sense of the world together." (Robina Chatham & Brian Sutton, "Changing the IT Leader’s Mindset", 2010)

15 November 2020

On Networks (1990-1999)

"A neural network is a massively parallel distributed processor that has a natural propensity for storing experiential knowledge and making it available for use. It resembles the brain in two respects: 1. Knowledge is acquired by the network through a learning process. 2. Interneuron connection strengths known as synaptic weights are used to store the knowledge." (Igor Aleksander, "An introduction to neural computing", 1990) 

"Neural Computing is the study of networks of adaptable nodes which through a process of learning from task examples, store experiential knowledge and make it available for use." (Igor Aleksander, "An introduction to neural computing", 1990) 

"Metaphor plays an essential role in establishing a link between scientific language and the world. Those links are not, however, given once and for all. Theory change, in particular, is accompanied by a change in some of the relevant metaphors and in the corresponding parts of the network of similarities through which terms attach to nature." (Thomas S Kuhn, "Metaphor in science", 1993)

"What is a system? A system is a network of interdependent components that work together to try to accomplish the aim of the system. A system must have an aim. Without an aim, there is no system. The aim of the system must be clear to everyone in the system. The aim must include plans for the future. The aim is a value judgment." (William E Deming, "The New Economics for Industry, Government, Education”, 1993)

"Mathematics says the sum value of a network increases as the square of the number of members. In other words, as the number of nodes in a network increases arithmetically, the value of the network increases exponentially. Adding a few more members can dramatically increase the value of the network." (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)

"The basic principle of an autocatalytic network is that even though nothing can make itself, everything in the pot has at least one reaction that makes it, involving only other things in the pot. It's a symbiotic system in which everything cooperates to make the metabolism work - the whole is greater than the sum of the parts." (J Doyne Farmer, "The Second Law of Organization" [in The Third Culture: Beyond the Scientific Revolution], 1995)

"The only organization capable of unprejudiced growth, or unguided learning, is a network. All other topologies limit what can happen." (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)

"The multiplier effect is a major feature of networks and flows. It arises regardless of the particular nature of the resource, be it goods, money, or messages." (John H Holland, "Hidden Order - How Adaptation Builds Complexity", 1995)

"There are a variety of swarm topologies, but the only organization that holds a genuine plurality of shapes is the grand mesh. In fact, a plurality of truly divergent components can only remain coherent in a network. No other arrangement-chain, pyramid, tree, circle, hub-can contain true diversity working as a whole. This is why the network is nearly synonymous with democracy or the market." (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)

"In the new systems thinking, the metaphor of knowledge as a building is being replaced by that of the network. As we perceive reality as a network of relationships, our descriptions, too, form an interconnected network of concepts and models in which there are no foundations. For most scientists such a view of knowledge as a network with no firm foundations is extremely unsettling, and today it is by no means generally accepted. But as the network approach expands throughout the scientific community, the idea of knowledge as a network will undoubtedly find increasing acceptance." (Fritjof Capra, "The Web of Life: A new scientific understanding of living systems", 1996)

"Networks constitute the new social morphology of our societies, and the diffusion of networking logic substantially modifies the operation and outcomes in processes of production, experience, power, and culture. While the networking form of social organization has existed in other times and spaces, the new information technology paradigm provides the material basis for its pervasive expansion throughout the entire social structure." (Manuel Castells, "The Rise of the Network Society", 1996)

"The more complex the network is, the more complex its pattern of interconnections, the more resilient it will be." (Fritjof Capra, "The Web of Life: A New Scientific Understanding of Living Systems", 1996)

"There is a multilayering of global networks in the key strategic activities that structure and destructure the planet. When these multilayered networks overlap in some node, when there is a node that belongs to different networks, two major consequences follow. First, economies of synergy between these different networks take place in that node: between financial markets and media businesses; or between academic research and technology development and innovation; between politics and media." (Manuel Castells, "The Rise of the Network Society", 1996) 

"When the knowledge base of an industry is both complex and expanding and the sources of expertise are widely dispersed, the locus of innovation will be found in networks of learning, rather than in individual firms." (Walter W. Powell et al, "Interorganizational collaboration and the locus of innovation: Networks of learning in biotechnology", Administrative science quarterly, 1996) 

"Mathematics says the sum value of a network increases as the square of the number of members. In other words, as the number of nodes in a network increases arithmetically, the value of the network increases exponentially. Adding a few more members can dramatically increase the value for all members." (Kevin Kelly, "New Rules for the New Economy: 10 radical strategies for a connected world", 1998)

"Networks have existed in every economy. What’s different now is that networks, enhanced and multiplied by technology, penetrate our lives so deeply that 'network' has become the central metaphor around which our thinking and our economy are organized. Unless we can understand the distinctive logic of networks, we can’t profit from the economic transformation now under way." (Kevin Kelly, "New Rules for the New Economy: 10 radical strategies for a connected world", 1998)

"The dynamic of our society, and particularly our new economy, will increasingly obey the logic of networks. Understanding how networks work will be the key to understanding how the economy works." (Kevin Kelly, "New Rules for the New Economy: 10 radical strategies for a connected world", 1998)

"The notion of system we are interested in may be described generally as a complex of elements or components directly or indirectly related in a network of interrelationships of various kinds, such that it constitutes a dynamic whole with emergent properties." (Walter F Buckley, "Society: A Complex Adaptive System - Essays in Social Theory", 1998)

12 November 2020

On Machines V (Mind vs. Machine I)

"Moreover, it must be confessed that perception and that which depends upon it are inexplicable on mechanical grounds, that is to say, by means of figures and motions. And supposing there were a machine, so constructed as to think, feel, and have perception, it might be conceived as increased in size, while keeping the same proportions, so that one might go into it as into a mill. That being so, we should, on examining its interior, find only parts which work one upon another, and never anything by which to explain a perception. Thus it is in a simple substance, and not in a compound or in a machine, that perception must be sought for." (Gottfried W Leibniz,  "Monadology", 1714)

"The machine is only a tool after all, which can help humanity progress faster by taking some of the burdens of calculations and interpretations off its back. The task of the human brain remains what it has always been; that of discovering new data to be analyzed, and of devising new concepts to be tested." (Isaac Asimov, "I, Robot", 1950)

"Let an ultraintelligent machine be defined as a machine that can far surpass all the intellectual activities of any man however clever. Since the design of machines is one of these intellectual activities, an ultraintelligent machine could design even better machines; there would then unquestionably be an 'intelligence explosion:, and the intelligence of man would be left far behind. Thus the first ultraintelligent machine is the last invention that man need ever make." (Irving J Good, "Speculations Concerning the First Ultraintelligent Machine", Advances in Computers Vol. 6, 1965) 

"The idea of making machines that think has an unfailing fascination, not only for science fiction readers, but for all who can see it is a possible way of gaining some understanding of the working of our own minds. Thinking, however, is not an easily defined phenomenon, although it is often considered to be the process of solving problems." (Edward Ihnatowicz, "The Relevance of Manipulation to the Process of Perception", 1977)

"If cognitive processes can be realized in a general machine then it is possible to execute mental operations in artifacts that are not necessarily subject to the embarrassing spatio-temporal limitations and structural frailties of a biological processor." (Gordon Pask, "Conversation, Cognition and Learnin", 1975)

"It's difficult to be rigorous about whether a machine really 'knows', 'thinks', etc., because we're hard put to define these things. We understand human mental processes only slightly better than a fish understands swimming." (John McCarthy, "The Little Thoughts of Thinking Machines, Psychology Today", 1983) 

"Under pressure from the computer, the question of mind in relation to machine is becoming a central cultural preoccupation." (Sherry Turkle, "The Second Self: Computers and the Human Spirit", 1984)

"The hardest problems we have to face do not come from philosophical questions about whether brains are machines or not. There is not the slightest reason to doubt that brains are anything other than machines with enormous numbers of parts that work in perfect accord with physical laws. As far as anyone can tell, our minds are merely complex processes. The serious problems come from our having had so little experience with machines of such complexity that we are not yet prepared to think effectively about them." (Marvin Minsky, 1986)

"Either mathematics is too big for the human mind, or the human mind is more than a machine." (Kurt Gödel)

"The whole thinking process is rather mysterious to us, but I believe that the attempt to make a thinking machine will help us greatly in finding out how we think ourselves." (Alan M Turing)

08 October 2020

Systems Thinking III

"Systems thinking is a discipline for seeing the 'structures' that underlie complex situations, and for discerning high from low leverage change. That is, by seeing wholes we learn how to foster health. To do so, systems thinking offers a language that begins by restructuring how we think." (Peter Senge, "The Fifth Discipline", 1990)

"Systems thinking is a discipline for seeing wholes. It is a framework for seeing interrelationships rather than things, for seeing patterns of change rather than static 'snapshots'. It is a set of general principles- distilled over the course of the twentieth century, spanning fields as diverse as the physical and social sciences, engineering, and management. [...] During the last thirty years, these tools have been applied to understand a wide range of corporate, urban, regional, economic, political, ecological, and even psychological systems. And systems thinking is a sensibility for the subtle interconnectedness that gives living systems their unique character." (Peter Senge, "The Fifth Discipline", 1990)

"Systems thinking is a framework for seeing interrelationships rather than things, for seeing patterns rather than static snapshots. It is a set of general principles spanning fields as diverse as physical and social sciences, engineering and management." (Peter Senge, "The Fifth Discipline", 1990) 

"Systems philosophy brings forth a reorganization of ways of thinking. It creates a new worldview, a new paradigm of perception and explanation, which is manifested in integration, holistic thinking, purpose-seeking, mutual causality, and process-focused inquiry.” (Béla H. Bánáthy, "Systems Design of Education”, 1991)

"The new paradigm may be called a holistic world view, seeing the world as an integrated whole rather than a dissociated collection of parts. It may also be called an ecological view, if the term 'ecological' is used in a much broader and deeper sense than usual. Deep ecological awareness recognizes the fundamental interdependence of all phenomena and the fact that, as individuals and societies we are all embedded in (and ultimately dependent on) the cyclical process of nature." (Fritjof Capra & Gunter A Pauli, "Steering business toward sustainability", 1995)

"In the new systems thinking, the metaphor of knowledge as a building is being replaced by that of the network. As we perceive reality as a network of relationships, our descriptions, too, form an interconnected network of concepts and models in which there are no foundations. For most scientists such a view of knowledge as a network with no firm foundations is extremely unsettling, and today it is by no means generally accepted. But as the network approach expands throughout the scientific community, the idea of knowledge as a network will undoubtedly find increasing acceptance." (Fritjof Capra," The Web of Life: a new scientific understanding of living systems", 1996)

"It [system dynamics] focuses on building system dynamics models with teams in order to enhance team learning, to foster consensus and to create commitment with a resulting decision […] System dynamics can be helpful to elicit and integrate mental models into a more holistic view of the problem and to explore the dynamics of this holistic view […] It must be understood that the ultimate goal of the intervention is not to build a system dynamics model. The system dynamics model is a means to achieve other ends […] putting people in a position to learn about a messy problem [...] create a shared social reality […] a shared understanding of the problem and potential solutions [...] to foster consensus within the team [..]" (Jac A M Vennix, "Group Model Building: Facilitating Team Learning Using System Dynamics", 1996)

"Understanding ecological interdependence means understanding relationships. It requires the shifts of perception that are characteristic of systems thinking - from the parts to the whole, from objects to relationships, from contents to patterns. […] Nourishing the community means nourishing those relationships." (Fritjof Capra, "The Web of Life: A New Scientific Understanding of Living Systems", 1996)

"Systems thinking practices the exact opposite of this analytic approach. Systems thinking studies the organization as a whole in its interaction with its environment. Then, it works backwards to understand how each part of that whole works in relation to, and support of, the entire system’s objectives. Only then can the core strategies be formulated." (Stephen G Haines, "The Systems Thinking Approach to Strategic Planning and Management", 2000)

"Systems, and organizations as systems, can only be understood holistically. Try to understand the system and its environment first. Organizations are open systems and, as such, are viable only in interaction with and adaptation to the changing environment." (Stephen G Haines, "The Systems Thinking Approach to Strategic Planning and Management", 2000)

Previous Post <<||>> Next Post

Related Posts Plugin for WordPress, Blogger...

On Leonhard Euler

"I have been able to solve a few problems of mathematical physics on which the greatest mathematicians since Euler have struggled in va...