"I have been able to solve a few problems of mathematical physics on which the greatest mathematicians since Euler have struggled in vain. [...] But the pride I might have held in my conclusions was perceptibly lessened by the fact that I knew that the solution of these problems had almost always come to me as the gradual generalization of favorable examples, by a series of fortunate conjectures, after many errors. I am fain to compare myself with a wanderer on the mountains who, not knowing the path, climbs slowly and painfully upwards and often has to retrace his steps because he can go no further—then, whether by taking thought or from luck, discovers a new track that leads him on a little till at length when he reaches the summit he finds to his shame that there is a royal road by which he might have ascended, had he only the wits to find the right approach to it. In my works, I naturally said nothing about my mistake to the reader, but only described the made track by which he may now reach the same heights without difficulty." (Hermann von Helmholtz, 1891)
"There is a famous formula, perhaps the most compact and famous of all formulas developed by Euler from a discovery of de Moivre: It appeals equally to the mystic, the scientist, the philosopher, the mathematician." (Edward Kasner & James R Newman, "Mathematics and the Imagination", 1940)
"The difference is that energy is a property of the microstates, and so all observers, whatever macroscopic variables they may choose to define their thermodynamic states, must ascribe the same energy to a system in a given microstate. But they will ascribe different entropies to that microstate, because entropy is not a property of the microstate, but rather of the reference class in which it is embedded. As we learned from Boltzmann, Planck, and Einstein, the entropy of a thermodynamic state is a measure of the number of microstates compatible with the macroscopic quantities that you or I use to define the thermodynamic state." (Edwin T Jaynes, "Papers on Probability, Statistics, and Statistical Physics", 1983)
"The acceptance of complex numbers into the realm of algebra had an impact on analysis as well. The great success of the differential and integral calculus raised the possibility of extending it to functions of complex variables. Formally, we can extend Euler's definition of a function to complex variables without changing a single word; we merely allow the constants and variables to assume complex values. But from a geometric point of view, such a function cannot be plotted as a graph in a two-dimensional coordinate system because each of the variables now requires for its representation a two-dimensional coordinate system, that is, a plane. To interpret such a function geometrically, we must think of it as a mapping, or transformation, from one plane to another."
"Why did he [Euler] choose the letter e? There is no consensus. According to one view, Euler chose it because it is the first letter of the word exponential. More likely, the choice came to him naturally, since the letters a, b, c, and d frequently appeared elsewhere in mathematics. It seems unlikely that Euler chose the letter because it is the initial of his own name, as occasionally has been suggested. He was an extremely modest man and often delayed publication of his own work so that a colleague or student of his would get due credit. In any event, his choice of the symbol e, like so many other symbols of his, became universally accepted." (Eli Maor, "e: The Story of a Number", 1994)
"I see some parallels between the shifts of fashion in mathematics and in music. In music, the popular new styles of jazz and rock became fashionable a little earlier than the new mathematical styles of chaos and complexity theory. Jazz and rock were long despised by classical musicians, but have emerged as art-forms more accessible than classical music to a wide section of the public. Jazz and rock are no longer to be despised as passing fads. Neither are chaos and complexity theory. But still, classical music and classical mathematics are not dead. Mozart lives, and so does Euler. When the wheel of fashion turns once more, quantum mechanics and hard analysis will once again be in style." (Freeman J Dyson, "Book Review of ‘Nature’s Numbers’", The American Mathematical Monthly, Vol. 103 (7), 1996)
"[…] and unlike the physics or chemistry or engineering of today, which will almost surely appear archaic to technicians of the far future, Euler’s formula will still appear, to the arbitrarily advanced mathematicians ten thousand years hence, to be beautiful and stunning and untarnished by time." (Paul J Nahin, "Dr. Euler's Fabulous Formula: Cures Many Mathematical Ills", 2006)
"I think e^iπ+1=0 is beautiful because it is true even in the face of enormous potential constraint. The equality is precise; the left-hand side is not 'almost' or 'pretty near' or 'just about' zero, but exactly zero. That five numbers, each with vastly different origins, and each with roles in mathematics that cannot be exaggerated, should be connected by such a simple relationship, is just stunning. It is beautiful. And unlike the physics or chemistry or engineering of today, which will almost surely appear archaic to technicians of the far future, Euler's formula will still appear, to the arbitrarily advanced mathematicians ten thousand years hence, to be beautiful and stunning and untarnished by time." (Paul J Nahin, "Dr. Euler's Fabulous Formula: Cures Many Mathematical Ills", 2006)
"There are many ways to use unique prime factorization, and it is rightly regarded as a powerful idea in number theory. In fact, it is more powerful than Euclid could have imagined. There are complex numbers that behave like 'integers' and 'primes', and unique prime factorization holds for them as well. Complex integers were first used around 1770 by Euler, who found they have almost magical powers to unlock secrets of ordinary integers. For example, by using numbers of the form a + b√ -2. where a and b are integers, he was able to prove a claim of Fermat that 27 is the only cube that exceeds a square by 2. Euler's results were correct, but partly by good luck. He did not really understand complex 'primes' and their behavior." (John Stillwell, "Yearning for the Impossible: The Surprising Truths of Mathematics", 2006)
"At first glance, the number e, known in mathematics as Euler’s number, doesn’t seem like much. It’s about 2.7, a quantity of such modest size that it invites contempt in our age of wretched excess and relentless hype." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)
"This equation is considered by some mathematicians and physicists to be the most important equation ever devised. In Euler’s relation, both sides of the equation are expressions for a complex number on the unit circle. The left side emphasizes the magnitude (the 1 multiplying e^iθ ) and direction in the complex plane (θ), while the right side emphasizes the real (cos θ) and imaginary (sin θ) components. Another approach to demonstrating the equivalence of the two sides of Euler’s relation is to write out the power-series representation of each side; [...]" (Daniel Fleisch & Laura Kinnaman, "A Student’s Guide to Waves", 2015)
"Euler’s formula - although deceptively simple - is actually staggeringly conceptually difficult to apprehend in its full glory, which is why so many mathematicians and scientists have failed to see its extraordinary scope, range, and ontology, so powerful and extensive as to render it the master equation of existence, from which the whole of mathematics and science can be derived, including general relativity, quantum mechanics, thermodynamics, electromagnetism and the strong and weak nuclear forces! It’s not called the God Equation for nothing. It is much more mysterious than any theistic God ever proposed." (Thomas Stark, "God Is Mathematics: The Proofs of the Eternal Existence of Mathematics", 2018)
"Like a Shakespearean sonnet that captures the very essence of love, or a painting that brings out the beauty of the human form that is far more than just skin deep, Euler's equation reaches down into the very depths of existence." (Keith J Devlin)