Showing posts with label formulas. Show all posts
Showing posts with label formulas. Show all posts

22 April 2021

On Sampling III

"The fact must be expressed as data, but there is a problem in that the correct data is difficult to catch. So that I always say 'When you see the data, doubt it!' 'When you see the measurement instrument, doubt it!' [...]For example, if the methods such as sampling, measurement, testing and chemical analysis methods were incorrect, data. […] to measure true characteristics and in an unavoidable case, using statistical sensory test and express them as data." (Kaoru Ishikawa, Annual Quality Congress Transactions, 1981)

"The law of truly large numbers states: With a large enough sample, any outrageous thing is likely to happen." (Frederick Mosteller, "Methods for Studying Coincidences", Journal of the American Statistical Association Vol. 84, 1989)

"A little thought reveals a fact widely understood among statisticians: The null hypothesis, taken literally (and that’s the only way you can take it in formal hypothesis testing), is always false in the real world. [...] If it is false, even to a tiny degree, it must be the case that a large enough sample will produce a significant result and lead to its rejection. So if the null hypothesis is always false, what’s the big deal about rejecting it?" (Jacob Cohen,"Things I Have Learned (So Far)", American Psychologist, 1990)

"When looking at the end result of any statistical analysis, one must be very cautious not to over interpret the data. Care must be taken to know the size of the sample, and to be certain the method forg athering information is consistent with other samples gathered. […] No one should ever base conclusions without knowing the size of the sample and how random a sample it was. But all too often such data is not mentioned when the statistics are given - perhaps it is overlooked or even intentionally omitted." (Theoni Pappas, "More Joy of Mathematics: Exploring mathematical insights & concepts", 1991)

"When the sample size is small or the study is of one organization, descriptive use of the thematic coding is desirable." (Richard Boyatzis, "Transforming qualitative information", 1998)

10 February 2021

On Complex Numbers XIX (Euler's Formula II)

"The equation e^πi+1 = 0 is true only by virtue of a large number of profound connections across many fields. It is true because of what it means! And it means what it means because of all those metaphors and blends in the conceptual system of a mathematician who understands what it means. To show why such an equation is true for conceptual reasons is to give what we have called an idea analysis of the equation." (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being", 2000)

"The equation e^πi =-1 says that the function w= e^z, when applied to the complex number πi as input, yields the real number -1 as the output, the value of w. In the complex plane, πi is the point [0,π) - π on the i-axis. The function w=e^z maps that point, which is in the z-plane, onto the point (-1, 0) - that is, -1 on the x-axis-in the w-plane. […] But its meaning is not given by the values computed for the function w=e^z. Its meaning is conceptual, not numerical. The importance of  e^πi =-1 lies in what it tells us about how various branches of mathematics are related to one another - how algebra is related to geometry, geometry to trigonometry, calculus to trigonometry, and how the arithmetic of complex numbers relates to all of them." (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being", 2000)

"The significance of e^πi+1 = 0 is thus a conceptual significance. What is important is not just the numerical values of e, π, i, 1, and 0 but their conceptual meaning. After all, e, π, i, 1, and 0 are not just numbers like any other numbers. Unlike, say, 192,563,947.9853294867, these numbers have conceptual meanings in a system of common, important nonmathematical concepts, like change, acceleration, recurrence, and self-regulation.

They are not mere numbers; they are the arithmetizations of concepts. When they are placed in a formula, the formula incorporates the ideas the function expresses as well as the set of pairs of complex numbers it mathematically determines by virtue of those ideas." (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being", 2000)

"We will now turn to e^πi+1 = 0. Our approach will be there as it was here. e^πi+1 = 0 uses the conceptual structure of all the cases we have discussed so far - trigonometry, the exponentials, and the complex numbers. Moreover, it puts together all that conceptual structure. In other words, all those metaphors and blends are simultaneously activated and jointly give rise to inferences that they would not give rise to separately. Our job is to see how e^πi+1 = 0 is a precise consequence that arises when the conceptual structure of these three domains is combined to form a single conceptual blend." (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being", 2000)

"[…] the equation’s five seemingly unrelated numbers (e, i, π, 1, and 0) fit neatly together in the formula like contiguous puzzle pieces. One might think that a cosmic carpenter had jig-sawed them one day and mischievously left them conjoined on Euler’s desk as a tantalizing hint of the unfathomable connectedness of things.[…] when the three enigmatic numbers are combined in this form, e^iπ, they react together to carve out a wormhole that spirals through the infinite depths of number space to emerge smack dab in the heartland of integers." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"Thus, while feelings may be the essence of subjectivity, they are by no means part of our weaker nature - the valences they automatically generate are integral to our thought processes and without them we’d simply be lost. In particular, we’d have no sense of beauty at all, much less be able to feel (there’s that word again) that we’re in the presence of beauty when contemplating a work such as Euler’s formula. After all, e^iπ + 1 = 0 can give people limbic-triggered goosebumps when they first peer with understanding into its depths." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"Today, Euler’s formula is a tool as basic to electrical engineers and physicists as the spatula is to short-order cooks. It’s arguable that the formula’s ability to simplify the design and analysis of circuits contributed to the accelerating pace of electrical innovation during the twentieth century." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"[…] when the three enigmatic numbers are combined in this form, e^iπ, they react together to carve out a wormhole that spirals through the infinite depths of number space to emerge smack dab in the heartland of integers." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"Euler’s formula - although deceptively simple - is actually staggeringly conceptually difficult to apprehend in its full glory, which is why so many mathematicians and scientists have failed to see its extraordinary scope, range, and ontology, so powerful and extensive as to render it the master equation of existence, from which the whole of mathematics and science can be derived, including general relativity, quantum mechanics, thermodynamics, electromagnetism and the strong and weak nuclear forces! It’s not called the God Equation for nothing. It is much more mysterious than any theistic God ever proposed." (Thomas Stark, "God Is Mathematics: The Proofs of the Eternal Existence of Mathematics", 2018)

On Complex Numbers XVI

"When the formulas admit of intelligible interpretation, they are accessions to knowledge; but independently of their interpretation they are invaluable as symbolical expressions of thought. But the most noted instance is the symbol called the impossible or imaginary, known also as the square root of minus one, and which, from a shadow of meaning attached to it, may be more definitely distinguished as the symbol of semi-inversion. This symbol is restricted to a precise signification as the representative of perpendicularity in quaternions, and this wonderful algebra of space is intimately dependent upon the special use of the symbol for its symmetry, elegance, and power."  (Benjamin Peirce, "On the Uses and Transformations of Linear Algebra", 1875)

 "√-1 is take for granted today. No serious mathematician would deny that it is a number. Yet it took centuries for √-1 to be officially admitted to the pantheon of numbers. For almost three centuries, it was controversial; mathematicians didn't know what to make of it; many of them worked with it successfully without admitting its existence. […] Primarily for cognitive reasons. Mathematicians simply could not make it fit their idea of what a number was supposed to be. A number was supposed to be a magnitude. √-1 is not a magnitude comparable to the magnitudes of real numbers. No tree can be √-1 units high. You cannot owe someone √-1 dollars. Numbers were supposed to be linearly ordered. √-1 is not linearly ordered with respect to other numbers." (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being, 2000)

"From a formal perspective, much about complex numbers and arithmetic seems arbitrary. From a purely algebraic point of view, i arises as a solution to the equation x^2+1=0. There is nothing geometric about this - no complex plane at all. Yet in the complex plane, the i-axis is 90° from the x-axis. Why? Complex numbers in the complex plane add like vectors. Why? Complex numbers have a weird rule of multiplication […]" (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being, 2000)

"[…] i is not a real number-not ordered anywhere relative to the real numbers! In other words, it does not even have the central property of ‘numbers’, indicating a magnitude that can be linearly compared to all other magnitudes. You can see why i has been called imaginary. It has almost none of the properties of the small natural numbers-not subitizability, not groupability, and not even relative magnitude. If i is to be a number, it is a number only by virtue of closure and the laws of arithmetic." (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being, 2000)

"The complex plane is just the 90° rotation plane-the rotation plane with the structure imposed by the 90° Rotation metaphor added to it. Multiplication by i is 'just' rotation by 90°. This is not arbitrary; it makes sense. Multiplication by-1 is rotation by 180°. A rotation of 180° is the result of two 90° rotations. Since i times i is -1, it makes sense that multiplication by i should be a rotation by 90°, since two of them yield a rotation by 180°, which is multiplication by -1." (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being, 2000)

"Negative numbers posed some of the same quandaries that the imaginary numbers did to Renaissance mathematicians - they didn’t seem to correspond to quantities associated with physical objects or geometrical figures. But they proved less conceptually challenging than the imaginaries. For instance, negative numbers can be thought of as monetary debts, providing a readily grasped way to make sense of them." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"Raising e to an imaginary-number power can be pictured as a rotation operation in the complex plane. Applying this interpretation to e raised to the 'i times π' power means that Euler’s formula can be pictured in geometric terms as modeling a half-circle rotation." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"The association of multiplication with vector rotation was one of the geometric interpretation's most important elements because it decisively connected the imaginaries with rotary motion. As we'll see, that was a big deal." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"The fact that multiplying positive 4i times positive 4i yields negative 16 seems like saying that the friend of my friend is my enemy. Which in turn suggests that bad things would happen if i and its offspring were granted citizenship in the number world. Unlike real numbers, which always feel friendly toward the friends of their friends, the i-things would plainly be subject to insane fits of jealousy, causing them to treat numbers that cozy up to their friends as threats. That might cause a general breakdown of numerical civility." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"Basis real and imaginary numbers have eternal and necessary reality. Complex numbers do not. They are temporal and contingent in the sense that for complex numbers to exist, we first have to carry out an operation: adding basis real and imaginary numbers together. Complex numbers therefore do not exist in their own right. They are constructed. They are derived. Symmetry breaking is exactly where constructed numbers come into existence. The very act of adding a sine wave to a cosine wave is the sufficient condition to create a broken symmetry: a complex number. The 'Big Bang', mathematically, is simply where a perfect array of basis sine and cosine waves start entering into linear combinations, creating a chain reaction, an 'explosion', of complex numbers - which corresponds to the 'physical' universe." (Thomas Stark, "God Is Mathematics: The Proofs of the Eternal Existence of Mathematics", 2018)

30 January 2021

David Stipp - Collected Quotes

"A transcendental number is defined as a number that isn’t the solution of any polynomial equation with integer constants times the x’s." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"At first glance, the number e, known in mathematics as Euler’s number, doesn’t seem like much. It’s about 2.7, a quantity of such modest size that it invites contempt in our age of wretched excess and relentless hype." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"Bombelli’s discovery showed that it was necessary to treat apparently meaningless imaginary-number-based solutions as legitimate numbers in order to find such hidden real-number solutions. That meant the imaginaries could no longer be cavalierly pig-troughed." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"But e is not to be trifled with. It’s one of math’s most versatile superheroes. To begin with, it’s uniquely valuable for mathematically representing growth or shrinkage. That alone makes it a standout. In fact, e’s usefulness for dealing with problems related to the growth of savings via compound interest is what brought about its discovery in the 1600s." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"But here’s a curious thing about modest little e that sets it apart from bombastic numbers that end in scads of zeros: no matter how long you allow the computer to crank away with ever larger numbers for n, you’ll never be able to calculate its exact numerical value. That’s because the digits to the right of e’s decimal point go on forever in a random pattern - Euler actually established this in 1737. In other words, e effectively encapsulates the infinite." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"But the number i is special for a decidedly different sort of reason - it’s math’s version of the ugly duckling. [...] The geometric interpretation of e^iπ is rich with emblematic potential. You could see its suggestion of a 180-degree spin as standing for a soldier’s about-face, a ballet dancer’s half pirouette, a turnaround jump shot, the movement of someone setting out on a long journey who looks back to wave farewell, the motion of the sun from dawn to dusk, the changing of the seasons from winter to summer, the turning of the tide. You could also associate it with turning the tables on someone, a reversal of fortune, turning one’s life around, the transformation of Dr. Jekyll into Mr. Hyde (and vice versa), the pivoting away from loss or regret to face the future, the ugly duckling becoming a beauty, drought giving way to rain. You might even interpret its highlighting of opposites as an allusion to elemental dualities—shadow and light, birth and death, yin and yang." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"Clearly e is different from child-safe numbers such as four or 10, which wouldn’t dream of inducing sudden loss of cranial integrity. But this wantonness isn’t peculiar to e. In fact, the number line is chock full of numbers, like e, whose decimal representations are effectively infinite. They’re called irrational numbers." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"Euler’s general formula, e^iθ = cos θ + i sin θ, also played a role in bringing about the happy ending of the imaginaries’ ugly duckling story. [...] Euler showed that e raised to an imaginary-number power can be turned into the sines and cosines of trigonometry." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"First, let me frame what I’m calling beautiful. It’s not simply the equation’s neat little string of symbols. Rather, it’s the entire nimbus of meaning surrounding the formula, including its funneling of many concepts into a statement of stunning brevity, its arresting combination of apparent simplicity and hidden complexity, the way its derivation bridges disparate topics in mathematics, and the fact that it’s rich with implications, some of which weren’t apparent until many years after it was proved to be true. I think most mathematicians would agree that the equation’s beauty concerns something like this nimbus." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"However, in contrast to one, which is singularly straightforward, zero is secretly peculiar. If you pierce the obscuring haze of familiarity around it, you’ll see that it is a quantitative entity that, curiously, is really the absence of quantity. It took people a long time to get their minds around that." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"In short, infinity is like a colossal dragon that’s known for inducing madness in those who dare to stare hard at it but which is also known for making an honest living by traveling around the countryside and hiring itself out to pull farmers’ plows." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"[...] mathematicians are always trying to think their way out of boxes." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"Negative numbers posed some of the same quandaries that the imaginary numbers did to Renaissance mathematicians - they didn’t seem to correspond to quantities associated with physical objects or geometrical figures. But they proved less conceptually challenging than the imaginaries. For instance, negative numbers can be thought of as monetary debts, providing a readily grasped way to make sense of them." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"Raising e to an imaginary-number power can be pictured as a rotation operation in the complex plane. Applying this interpretation to e raised to the "i times π" power means that Euler’s formula can be pictured in geometric terms as modeling a half-circle rotation." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"Since it’s impossible to express an irrational number such as π as a fraction, the quest for a fraction equal to π could never be successful. Ancient mathematicians didn’t know that, however. As noted above, it wasn’t until the eighteenth century that the irrationality of π was demonstrated. Their labors weren’t in vain, though. While enthusiastically pursuing their fundamentally doomed enterprise, they developed a lot of interesting mathematics as well as impressively accurate approximations of π." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"The association of multiplication with vector rotation was one of the geometric interpretation's most important elements because it decisively connected the imaginaries with rotary motion. As we'll see, that was a big deal." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"[…] the equation’s five seemingly unrelated numbers (e, i, π, 1, and 0) fit neatly together in the formula like contiguous puzzle pieces. One might think that a cosmic carpenter had jig-sawed them one day and mischievously left them conjoined on Euler’s desk as a tantalizing hint of the unfathomable connectedness of things.[…] when the three enigmatic numbers are combined in this form, e^iπ, they react together to carve out a wormhole that spirals through the infinite depths of number space to emerge smack dab in the heartland of integers." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"The fact that multiplying positive 4i times positive 4i yields negative 16 seems like saying that the friend of my friend is my enemy. Which in turn suggests that bad things would happen if i and its offspring were granted citizenship in the number world. Unlike real numbers, which always feel friendly toward the friends of their friends, the i-things would plainly be subject to insane fits of jealousy, causing them to treat numbers that cozy up to their friends as threats. That might cause a general breakdown of numerical civility." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"The most remarkable thing about π, however, is the way it turns up all over the place in math, including in calculations that seem to have nothing to do with circles." (David Stipp, “A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics”, 2017)

"[…] the story of π is the deeply ironic tale of one thinker after another trying to nail down the size of a number that is fundamentally immeasurable. (Because it’s irrational.)" (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"The trig functions’ input consists of the sizes of angles inside right triangles. Their output consists of the ratios of the lengths of the triangles’ sides. Thus, they act as if they contained phone-directory-like groups of paired entries, one of which is an angle, and the other is a ratio of triangle-side lengths associated with the angle. That makes them very useful for figuring out the dimensions of triangles based on limited information." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"The very idea of raising a number to an imaginary power may well have seemed to most of the era’s mathematicians like asking the ghost of a late amphibian to jump up on a harpsichord and play a minuet." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"Then there’s the fact that if you treat infinity like a number and try to do arithmetic with it, you soon find yourself drawing wacky-sounding conclusions like 'infinity plus infinity is equal to infinity, and therefore infinity is twice as big as itself'." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"Thus, while feelings may be the essence of subjectivity, they are by no means part of our weaker nature - the valences they automatically generate are integral to our thought processes and without them we’d simply be lost. In particular, we’d have no sense of beauty at all, much less be able to feel (there’s that word again) that we’re in the presence of beauty when contemplating a work such as Euler’s formula. After all, e^iπ + 1 = 0 can give people limbic-triggered goosebumps when they first peer with understanding into its depths." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"Today it’s easy to see the beauty of i, thanks, among other things, to its prominence in mathematics’ most beautiful equation. Thus, it may seem strange that it was once regarded as akin to a small waddling gargoyle. Indeed, the simplicity of its definition suggests unpretentious elegance: i is just the square root of −1. But as with many definitions in mathematics, i’s is fraught with provocative implications, and the ones that made it a star in mathematics weren’t apparent until long after it first came on the scene." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"Today, Euler’s formula is a tool as basic to electrical engineers and physicists as the spatula is to short-order cooks. It’s arguable that the formula’s ability to simplify the design and analysis of circuits contributed to the accelerating pace of electrical innovation during the twentieth century." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"Zero seems as diaphanous as a fairy’s wing, yet it is as powerful as a black hole. The obverse of infinity, it’s enthroned at the center of the number line - at least as the line is usually drawn - making it a natural center of attention. It has no effect when added to other numbers, as if it were no more substantial than a fleeting thought. But when multiplied times other numbers it seems to exert uncanny power, inexorably sucking them in and making them vanish into itself at the center of things. If you’re into stark simplicity, you can express any number (that is, any number that’s capable of being written out) with the use of zero and just one other number, one." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"Wessel and his fellow explorers had discovered the natural habitat of Leibniz’s ghostly amphibians: the complex plane. Once the imaginaries were pictured there, it became clear that their meaning could be anchored to a familiar thing - sideways or rotary motion - giving them an ontological heft they’d never had before. Their association with rotation also meant that they could be conceptually tied to another familiar idea: oscillation." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"[…] when the three enigmatic numbers are combined in this form, e^iπ, they react together to carve out a wormhole that spirals through the infinite depths of number space to emerge smack dab in the heartland of integers." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"Yet mathematicians have been drawn to infinity through the ages like moths to flames.[…] once you get hooked on something that’s infinite, you just can’t stop." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

01 December 2020

On Symbols (1900-1909)

"Arithmetical symbols are written diagrams and geometrical figures are graphic formulas." (David Hilbert, Bulletin of the American Mathematical Society, Mathematical Problems Vol. 8, 1902)

"[,,,] the mind has the faculty of creating symbols, and it is thus that it has constructed the mathematical continuum, which is only a particular system of symbols. The only limit to its power is the necessity of avoiding all contradiction; but the mind only makes use of it when experiment gives a reason for it." (Henri Poincaré, "Science and Hypothesis", 1902)

"The fact that all Mathematics is Symbolic Logic is one of the greatest discoveries of our age; and when this fact has been established, the remainder of the principles of mathematics consists in the analysis of Symbolic Logic itself." (Bertrand Russell, "Principles of Mathematics", 1903)

"The chief end of mathematical instruction is to develop certain powers of the mind, and among these the intuition is not the least precious. By it the mathematical world comes in contact with the real world, and even if pure mathematics could do without it, it would always be necessary to turn to it to bridge the gulf between symbol and reality. The practician will always need it, and for one mathematician there are a hundred practicians. However, for the mathematician himself the power is necessary, for while we demonstrate by logic, we create by intuition; and we have more to do than to criticize others’ theorems, we must invent new ones, this art, intuition teaches us." (Henri Poincaré, "The Value of Science", 1905)

"A symbolical representation of a method of calculation has the same significance for a mathematician as a model or a visualisable working hypothesis has for a physicist. The symbol, the model, the hypothesis runs parallel with the thing to be represented. But the parallelism may extend farther, or be extended farther, than was originally intended on the adoption of the symbol. Since the thing represented and the device representing are after all different, what would be concealed in the one is apparent in the other." (Ernst Mach, "Space and Geometry: In the Light of physiological, phycological and physical inquiry", 1906) 

"Nature talks in symbols; he who lacks imagination cannot understand her." (Abraham Miller, "Unmoral Maxims", 1906)

"Now, a symbol is not, properly speaking, either true or false; it is, rather, something more or less well selected to stand for the reality it represents, and pictures that reality in a more or less precise, or a more or less detailed manner." (Pierre-Maurice-Marie Duhem, "The Aim and Structure of Physical Theory", 1906) 

"The training which mathematics gives in working with symbols is an excellent preparation for other sciences; […] the world's work requires constant mastery of symbols." (Jacob W A Young, "The Teaching of Mathematics", 1907)

"But, once again, what the physical states as the result of an experiment is not the recital of observed facts, but the interpretation and the transposing of these facts into the ideal, abstract, symbolic world created by the theories he regards as established." (Pierre-Maurice-Marie Duhem, "The Aim and Structure of Physical Theory", 1908)

"Symbolic Logic is Mathematics, Mathematics is Symbolic Logic, the twain are one." (Cassius J Keyser, "Lectures on Science, Philosophy and Art", 1908)

"The laws of physics are therefore provisional in that the symbols they relate too simple to represent reality completely." (Pierre-Maurice-Marie Duhem, “The Aim and Structure of Physical Theory”, 1908)

"To facilitate eyeless observation of his sense-transcending world, the mathematician invokes the aid of physical diagrams and physical symbols in endless variety and combination [...]" (Cassius J Keyser, "Lectures on Science, Philosophy and Art", 1907-1908, 1908)

"I do in no wise share this view [that the axioms are arbitrary propositions which we assume wholly at will, and that in like manner the fundamental conceptions are in the end only arbitrary symbols with which we operate] but consider it the death of all science: in my judgment the axioms of geometry are not arbitrary, but reasonable propositions which generally have the origin in space intuition and whose separate content and sequence is controlled by reasons of expediency." (Felix Klein, "Elementarmathematik vom hoheren Standpunkte aus", 1909)

22 November 2020

Albert-László Barabási - Collected Quotes

"Every growth process obeys some simple symmetries. For example, the laws of physics are independent of where we define the zero height of the interface, so the continuum growth equation must be independent as well. In most cases the scaling properties of the system and the continuum equations are unambiguously determined by the symmetries of the system." (Albert-Laszlo Barabasi & H. Eugene Stanley, "Fractal Concepts in Surface Growth", 1995)

"In fact, many interfaces and surfaces are examples of self-affine objects which are 'intermediate' between fractal objects and non-fractal objects in the following sense. When we make a scale change that is the same in all directions, self-affine objects change morphology. On the other hand, when we make a scale change that is different for each direction, then interfaces do not change morphology. Rather, they behave like fractal objects in that they appear the same before and after the transformation." (Albert-Laszlo Barabasi & H. Eugene Stanley, "Fractal Concepts in Surface Growth", 1995)

"Euler's proof that in Konigsberg there is no path crossing all seven bridges only once was based on a simple observation. Nodes with an odd number of links must be either the starting or the end point of the journey. A continuous path that goes through all the bridges can have only one starting and one end point. Thus, such a path cannot exist on a graph that has more than two nodes with an odd number of links. As the Konigsberg graph had four such nodes, one could not find the desired path." (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)

"Every network has its own fitness distribution, which tells us how similar or different the nodes in the network are. In networks where most of the nodes have comparable fitness, the distribution follows a narrowly peaked bell curve. In other networks, the range of fitnesses is very wide such that a few nodes are much more fit than most others. […] the mathematical tools developed decades earlier to describe quantum gases enabled us to see that, independent of the nature of links and nodes, a network's behavior and topology are determined by the shape of its fitness distribution. But even though each system, from the Web to Holywood, has a unique fitness distribution, Bianconi's calculation indicated that in terms of topology all networks fall into one of only two possible categories. In most networks the competition does not have an easily noticeable impact on the network's topology. In some networks, however, the winner takes all the links, a clear signature of Bose-Einstein condensation." (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)

"In a random network the peak of the distribution implies that the vast majority of nodes have the same number of links and that nodes deviating from the average are extremely rare. Therefore, a random network has a characteristic scale in its node connectivity, embodied by the average node and fixed by the peak of the degree distribution. In contrast, the absence of a peak in a power-law degree distribution implies that in a real network there is no such thing as a characteristic node. We see a continuous hierarchy of nodes, spanning from rare hubs to the numerous tiny nodes. The largest hub is closely fol - lowed by two or three somewhat smaller hubs, followed by dozens that are even smaller, and so on, eventually arriving at the numerous small nodes." (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)

"In networks belonging to the second category, the winner takes all, meaning that the fittest node grabs all links, leaving very little for the rest of the nodes. Such networks develop a star topology, in which all nodes are connected to a central hub. In such a hub-and-spokes network there is a huge gap between the lonely hub and everybody else in the system. Thus a winner-takes-all network is very different from the scale-free networks we encountered earlier, where there is a hierarchy of hubs whose size distribution follows a power law. A winner-takes-all network is not scale-free. Instead there is a single hub and many tiny nodes. This is a very important distinction." (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)

"[…] most earlier attempts to construct a theory of complexity have overlooked the deep link between it and networks. In most systems, complexity starts where networks turn nontrivial. No matter how puzzled we are by the behavior of an electron or an atom, we rarely call it complex, as quantum mechanics offers us the tools to describe them with remarkable accuracy. The demystification of crystals-highly regular networks of atoms and molecules-is one of the major success stories of twentieth-century physics, resulting in the development of the transistor and the discovery of superconductivity. Yet, we continue to struggle with systems for which the interaction map between the components is less ordered and rigid, hoping to give self-organization a chance." (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)

"Most systems displaying a high degree of tolerance against failures are a common feature: Their functionality is guaranteed by a highly interconnected complex network. A cell's robustness is hidden in its intricate regulatory and metabolic network; society's resilience is rooted in the interwoven social web; the economy's stability is maintained by a delicate network of financial and regulator organizations; an ecosystem's survivability is encoded in a carefully crafted web of species interactions. It seems that nature strives to achieve robustness through interconnectivity. Such universal choice of a network architecture is perhaps more than mere coincidences." (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)

"Nature normally hates power laws. In ordinary systems all quantities follow bell curves, and correlations decay rapidly, obeying exponential laws. But all that changes if the system is forced to undergo a phase transition. Then power laws emerge-nature's unmistakable sign that chaos is departing in favor of order. The theory of phase transitions told us loud and clear that the road from disorder to order is maintained by the powerful forces of self-organization and is paved by power laws. It told us that power laws are not just another way of characterizing a system's behavior. They are the patent signatures of self-organization in complex systems." (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)

"Networks are not en route from a random to an ordered state. Neither are they at the edge of randomness and chaos. Rather, the scale-free topology is evidence of organizing principles acting at each stage of the network formation process." (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)

"[…] networks are the prerequisite for describing any complex system, indicating that complexity theory must inevitably stand on the shoulders of network theory. It is tempting to step in the footsteps of some of my predecessors and predict whether and when we will tame complexity. If nothing else, such a prediction could serve as a benchmark to be disproven. Looking back at the speed with which we disentangled the networks around us after the discovery of scale-free networks, one thing is sure: Once we stumble across the right vision of complexity, it will take little to bring it to fruition. When that will happen is one of the mysteries that keeps many of us going." (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)

"Networks do not offer a miracle drug, a strategy that makes you invincible in any business environment. The truly important role networks play is in helping existing organizations adapt to rapidly changing market conditions. The very concept of network implies a multidimensional approach." (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)

"[…] real networks not only are connected but are well beyond the threshold of one. Random network theory tells us that as the average number of links per node increases beyond the critical one, the number of nodes left out of the giant cluster decreases exponentially. That is, the more links we add, the harder it is to find a node that remains isolated. Nature does not take risks by staying close to the threshold. It well surpasses it."  (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)

"Regular graphs are unique in that each node has exactly the same number of links. […] Such regularity is clearly absent from random graphs. The premise of the random network model is deeply egalitarian: We place the links completely randomly; thus all nodes have the same chance of getting one […] If the network is large, despite the links' completely random placement, almost all nodes will have approximately the same number of links." (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002) 

"The diversity of networks in business and the economy is mindboggling. There are policy networks, ownership networks, collaboration networks, organizational networks, network marketing-you name it. It would be impossible to integrate these diverse interactions into a single all-encompassing web. Yet no matter what organizational level we look at, the same robust and universal laws that govern nature's webs seem to greet us. The challenge is for economic and network research alike to put these laws into practice."  (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)

"The first category includes all networks in which, despite the fierce competition for links, the scale-free topology survives. These networks display a fit-get-rich behavior, meaning that the fittest node will inevitably grow to become the biggest hub. The winner's lead is never significant, however. The largest hub is closely followed by a smaller one, which acquires almost as many links as the fittest node. At any moment we have a hierarchy of nodes whose degree distribution follows a power law. In most complex networks, the power law and the fight for links thus are not antagonistic but can coexist peacefully."(Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)

"'There is an old debate', Erdos liked to say, 'about whether you create mathematics or just discover it. In other words, are the truths already there, even if we don't yet know them?' Erdos had a clear answer to this question: Mathematical truths are there among the list of absolute truths, and we just rediscover them. Random graph theory, so elegant and simple, seemed to him to belong to the eternal truths. Yet today we know that random networks played little role in assembling our universe. Instead, nature resorted to a few fundamental laws, which will be revealed in the coming chapters. Erdos himself created mathematical truths and an alternative view of our world by developing random graph theory." (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)

"The difference between human dynamics and data mining boils down to this: Data mining predicts our behaviors based on records of our patterns of activity; we don't even have to understand the origins of the patterns exploited by the algorithm. Students of human dynamics, on the other hand, seek to develop models and theories to explain why, when, and where we do the things we do with some regularity." (Albert-László Barabási, "Bursts: The Hidden Pattern Behind Everything We Do", 2010)

"A key discovery of network science is that the architecture of networks emerging in various domains of science, nature, and technology are similar to each other, a consequence of being governed by the same organizing principles. Consequently we can use a common set of mathematical tools to explore these systems."  (Albert-László Barabási, "Network Science", 2016)

"Although cascading failures may appear random and unpredictable, they follow reproducible laws that can be quantified and even predicted using the tools of network science. First, to avoid damaging cascades, we must understand the structure of the network on which the cascade propagates. Second, we must be able to model the dynamical processes taking place on these networks, like the flow of electricity. Finally, we need to uncover how the interplay between the network structure and dynamics affects the robustness of the whole system." (Albert-László Barabási, "Network Science", 2016)

"The exploding interest in network science during the first decade of the 21st century is rooted in the discovery that despite the obvious diversity of complex systems, the structure and the evolution of the networks behind each system is driven by a common set of fundamental laws and principles. Therefore, notwithstanding the amazing differences in form, size, nature, age, and scope of real networks, most networks are driven by common organizing principles. Once we disregard the nature of the components and the precise nature of the interactions between them, the obtained networks are more similar than different from each other." (Albert-László Barabási, "Network Science", 2016)

"And that’s what good networkers do. No matter the field, discipline, or industry, if we want to succeed, we must master the networks. Because as the First Law of Success reminds us, the harder it is to measure performance, the less performance matters." (Albert-László Barabási, "The Formula: The Universal Laws of Success", 2018)

05 February 2020

On Spacetime (1850-1874)

"The Mathematics, like language, (of which indeed they may be considered a species,) comprehending under that designation the whole science of number, space, form, time, and motion, as far as it can be expressed in abstract formulas, are evidently not only one of the most useful, but one of the grandest of studies." (Edward Everett, [address] 1857)

"What then is music? [...] It exists between thought and phenomenon, like a twilight medium, it stands between spirit and matter, related to and yet different from both; it is spirit, but spirit governed by time; it is matter, but matter that can manage without space." (Heinrich Heine, "On the French Stage: Intimate letters to August Lewald", 1857)

"All external objects and events which we can contemplate are viewed as having relations of Space, Time, and Number; and are subject to the general conditions which these Ideas impose, as well as to the particular laws which belong to each class of objects and occurrences." (William Whewell, "History of Scientific Ideas" Vol. 1, 1858)

"And so to imagine the action of a man entirely subject to the law of inevitability without any freedom, we must assume the knowledge of an infinite number of space relations, an infinitely long period of time, and an infinite series of causes." (Lev Tolstoy, "War and Peace", 1869)

"Human existence is girt round with mystery: the narrow region of our experience is a small island in the midst of a boundless sea. To add to the mystery, the domain of our earthly existence is not only an island of infinite space, but also in infinite time. The past and the future are alike shrouded from us: we neither know the origin of anything which is, nor its final destination." (John S Mill, "Nature, The Utility of Religion and Theism", 1874)

"In science nothing capable of proof ought to be accepted without proof. Though this demand seems so reasonable yet I cannot regard it as having been met even in […] that part of logic which deals with the theory of numbers. In speaking of arithmetic (algebra, analysis) as a part of logic I mean to imply that I consider the number concept entirely independent of the notions of intuition of space and time, that I consider it an immediate result from the laws of thought." (Richard Dedekind, "Was sind und was sollen die Zahlen?", 1888)

26 January 2020

Mental Models XXXV

"Here I am at the limit which God and nature has assigned to my individuality. I am compelled to depend upon word, language and image in the most precise sense, and am wholly unable to operate in any manner whatever with symbols and numbers which are easily intelligible to the most highly gifted minds." (Johann Wolfgang von Goethe, [Letter to Naumann] 1826)

"It may sound quite strange, but for me, as for other scientists on whom these kinds of imaginative images have a greater effect than other poems do, no science is at its very heart more closely related to poetry, perhaps, than is chemistry." (Just Liebig, 1854)

"But I thoroughly believe myself, and hope to prove to you, that science is full of beautiful pictures, of real poetry, and of wonder-working fairies; and what is more […] though they themselves will always remain invisible, yet you will see their wonderful power at work everywhere around you. […] There is only one gift we must have before we can learn to know them - we must have imagination. I do not mean mere fancy, which creates unreal images and impossible monsters, but imagination, the power of making pictures or images in our mind, of that which is, though it is invisible to us." (Arabella Buckley, Fairyland, 1879)

"Ask your imagination if it will accept a vibrating multiple proportion - a numerical ratio in a state of oscillation? I do not think it will. You cannot crown the edifice with this abstraction. The scientific imagination, which is here authoritative, demands, as the origin and cause of a series of ether-waves, a particle of vibrating matter quite as definite, though it may be excessively minute, as that which gives origin to a musical sound. Such a particle we name an atom or a molecule. I think the intellect, when focused so as to give definition without penumbral haze, is sure to realize this image at the last." (John Tyndall, "Fragments of Science", 1892)

"The mathematical formula is the point through which all the light gained by science passes in order to be of use to practice; it is also the point in which all knowledge gained by practice, experiment, and observation must be concentrated before it can be scientifically grasped. The more distant and marked the point, the more concentrated will be the light coming from it, the more unmistakable the insight conveyed. All scientific thought, from the simple gravitation formula of Newton, through the more complicated formulae of physics and chemistry, the vaguer so called laws of organic and animated nature, down to the uncertain statements of psychology and the data of our social and historical knowledge, alike partakes of this characteristic, that it is an attempt to gather up the scattered rays of light, the different parts of knowledge, in a focus, from whence it can be again spread out and analyzed, according to the abstract processes of the thinking mind. But only when this can be done with a mathematical precision and accuracy is the image sharp and well-defined, and the deductions clear and unmistakable. As we descend from the mechanical, through the physical, chemical, and biological, to the mental, moral, and social sciences, the process of focalization becomes less and less perfect, - the sharp point, the focus, is replaced by a larger or smaller circle, the contours of the image become less and less distinct, and with the possible light which we gain there is mingled much darkness, the sources of many mistakes and errors. But the tendency of all scientific thought is toward clearer and clearer definition; it lies in the direction of a more and more extended use of mathematical measurements, of mathematical formulae." (John T Merz, "History of European Thought in the 19th Century" Vol. 1, 1904)

"Many people believe that reasoning, and therefore science, is a different activity from imagining. But this is a fallacy […] Reasoning is constructed with movable images just as certainly as poetry is." (Jacob Bronowski, "Visionary Eye", 1978)

"The thinking person goes over the same ground many times. He looks at it from varying points of view - his own, his arch-enemy’s, others’. He diagrams it, verbalizes it, formulates equations, constructs visual images of the whole problem, or of troublesome parts, or of what is clearly known. But he does not keep a detailed record of all this mental work, indeed could not. […] Deep understanding of a domain of knowledge requires knowing it in various ways. This multiplicity of perspectives grows slowly through hard work and sets the state for the re-cognition we experience as a new insight." (Howard E Gruber, "Darwin on Man", 1981)

"Mathematicians have always needed to ‘see’ the complex concepts they work with in order to reason with them effectively. In the past, they conjured up mental images as best they could, but the wonders of computer graphics provide them with far more detailed pictures to think with." (Richard Palais and Luc Bernard, "2006 Visualization Project", 2006)

"Time is to eternity as an image is to its exemplar, and those things which are temporal bear a resemblance to those things which are eternal." (Nicholas of Cusa)

"You know how the divine Simplicity enfolds all things. Mind is the image of this enfolding Simplicity. If, then, you called this divine Simplicity infinite Mind, it will be the exemplar of our mind. If you called the divine mind the totality of the truth of things, you will call our mind the totality of the assimilation of things, so that it may be a totality of ideas. In the divine Mind conception is the production of things; in our mind conception is the knowledge of things. If the divine Mind is absolute Being, then its conception is the creation of beings; and conception in the human mind is the assimilation of beings." (Nicholas of Cusa)

24 January 2020

On Abstraction (1850-1899)

"Science gains from it [the pendulum] more than one can expect. With its huge dimensions, the apparatus presents qualities that one would try in vain to communicate by constructing it on a small [scale], no matter how carefully. Already the regularity of its motion promises the most conclusive results. One collects numbers that, compared with the predictions of theory, permit one to appreciate how far the true pendulum approximates or differs from the abstract system called 'the simple pendulum'." (Jean-Bernard-Léon Foucault, "Demonstration Experimentale du Movement de Rotation de la Terre", 1851)

"Beyond the little arithmetic required for the ordinary economies of life, the mass of college-bred men, unless engaged in the business of instruction or in pursuits which directly involve their application, from the time they leave their places of education, of whatever name, give up the Mathematics as a useless and hopeless abstraction." (Edward Everett, [address] 1857)

"The Mathematics, like language, (of which indeed they may be considered a species,) comprehending under that designation the whole science of number, space, form, time, and motion, as far as it can be expressed in abstract formulas, are evidently not only one of the most useful, but one of the grandest of studies." (Edward Everett, [address] 1857)

"However rapid and remote their flight of thought, it is a succession of images, not of abstractions. The details which give significance, and which by us are seen vaguely as through a vanishing mist, are by them seen in sharp outlines. The image which to us is a mere suggestion, is to them almost as vivid as the object. And it is because they see vividly that they can paint effectively." (George H Lewes, "The Principles of Success in Literature", 1865)

"Observe this: the abstraction of the philosopher is meant to keep the object itself, with its perturbing suggestions, out of sight, allowing only one quality to fill the field of vision; whereas the abstraction of the poet is meant to bring the object itself into more vivid relief, to make it visible by means of the selected qualities. In other words, the one aims at abstract symbols, the other at picturesque effects. The one can carry on his deductions by the aid of colourless signs, X or Y. The other appeals to the emotions through the symbols which will most vividly express the real objects in their relations to our sensibilities." (George H Lewes, "The Principles of Success in Literature", 1865)

"In abstract mathematical theorems the approximation to absolute truth is perfect, because we can treat of infinitesimals. In physical science, on the contrary, we treat of the least quantities which are perceptible." (William S Jevons, "The Principles of Science: A Treatise on Logic and Scientific Method", 1874)

"Purely mechanical phenomena do not exist […] are abstractions, made, either intentionally or from necessity, for facilitating our comprehension of things. The science of mechanics does not comprise the foundations, no, nor even a part of the world, but only an aspect of it." (Ernst Mach, "The Science of Mechanics", 1883)

"The theory most prevalent among teachers is that mathematics affords the best training for the reasoning powers; […] The modem, and to my mind true, theory is that mathematics is the abstract form of the natural sciences; and that it is valuable as a training of the reasoning powers, not because it is abstract, but because it is a representation of actual things." (Truman H Safford, "Mathematical Teaching and Its Modern Methods", 1886)

"[In mathematics] we behold the conscious logical activity of the human mind in its purest and most perfect form. Here we learn to realize the laborious nature of the process, the great care with which it must proceed, the accuracy which is necessary to determine the exact extent of the general propositions arrived at, the difficulty of forming and comprehending abstract concepts; but here we learn also to place confidence in the certainty, scope and fruitfulness of such intellectual activity." (Hermann Helmholtz, "Vorträge und Reden", 1896)

"In mathematics we see the conscious logical activity of our mind in its purest and most perfect form; here is made manifest to us all the labor and the great care with which it progresses, the precision which is necessary to determine exactly the source of the established general theorems, and the difficulty with which we form and comprehend abstract conceptions; but we also learn here to have confidence in the certainty, breadth, and fruitfulness of such intellectual labor." (Hermann von Helmholtz, "Vorträge und Reden", 1896)

"Mathematics is the most abstract of all the sciences. For it makes no external observations, nor asserts anything as a real fact. When the mathematician deals with facts, they become for him mere ‘hypotheses’; for with their truth he refuses to concern himself. The whole science of mathematics is a science of hypotheses; so that nothing could be more completely abstracted from concrete reality." (Charles S Peirce, "The Regenerated Logic", The Monist Vol. 7 (1), 1896)

"In order to comprehend and fully control arithmetical concepts and methods of proof, a high degree of abstraction is necessary, and this condition has at times been charged against arithmetic as a fault. I am of the opinion that all other fields of knowledge require at least an equally high degree of abstraction as mathematics, - provided, that in these fields the foundations are also everywhere examined with the rigour and completeness which is actually necessary." (David Hilbert, "Die Theorie der algebraischen Zahlkorper", 1897)

01 December 2019

On Diversity (1900-1999)

"What is a philosophy? It Is an answer satisfactory to the reason to all the great problems of life. That is what is meant by philosophy. It must satisfy the reason, and it must show the unity underlying the endless diversity of the facts that science observes." (Annie Besant, "The Immediate Future", 1911)

"Science is reduction. Mathematics is its ideal, its form par excellence, for it is in mathematics that assimilation, identification, is most perfectly realized. The universe, scientifically explained, would be a certain formula, one and eternal, regarded as the equivalent of the entire diversity and movement of things." (Émile Boutroux, "Natural law in Science and Philosophy", 1914)

"The world is an endless variety of facts, linked together by necessary and immutable bonds." (Émile Boutroux, "Natural law in Science and Philosophy", 1914)

"We must face life as it is and understand that diversity is its most essential feature." (Mary P Follett, "Creative Experience", 1924)

"Science is the attempt to make the chaotic diversity of our sense experience correspond to a logically uniform system of thought." (Albert Einstein, "Considerations Concerning the Fundaments of Theoretical Physics", Science Vol. 91 (2369), 1940)

"Any system that insulates itself from diversity in the environment tends to atrophy and lose its complexity and distinctive nature." (Gareth Morgan, "Images of Organization", 1986)

"The principle of maximum diversity operates both at the physical and at the mental level. It says that the laws of nature and the initial conditions are such as to make the universe as interesting as possible.  As a result, life is possible but not too easy. Always when things are dull, something new turns up to challenge us and to stop us from settling into a rut. Examples of things which make life difficult are all around us: comet impacts, ice ages, weapons, plagues, nuclear fission, computers, sex, sin and death.  Not all challenges can be overcome, and so we have tragedy. Maximum diversity often leads to maximum stress. In the end we survive, but only by the skin of our teeth." (Freeman J Dyson, "Infinite in All Directions", 1988)

"The goal of science is to make sense of the diversity of Nature." (John D Barrow, "Theories of Everything: The Quest for Ultimate Explanation", 1991)

"The most wonderful mystery of life may well be the means by which it created so much diversity from so little physical matter." (E. O. Wilson, "The Diversity of Life", 1992)

17 October 2019

Discovery in Physics (1900-1949)

"The science of physics does not only give us [mathematicians] an opportunity to solve problems, but helps us also to discover the means of solving them, and it does this in two ways: it leads us to anticipate the solution and suggests suitable lines of argument." (Henri Poincaré, "La valeur de la science" ["The Value of Science"], 1905)

"It behooves us always to remember that in physics it has taken great men to discover simple things." (D'Arcy W Thompson, "On Growth and Form", 1917)

"The aim of physics, consciously or unconsciously, has always been to discover what we may call the causal skeleton of the world." (Bertrand Russell, "The Analysis of Matter", 1927)

"Physics is mathematical not because we know so much about the physical world, but because we know so little: it is only its mathematical properties that we can discover." (Bertrand Russell, "An Outline of Philosophy", 1927)

"The discoveries in physical science, the triumphs in invention, attest the value of the process of trial and error. In large measure, these advances have been due to experimentation." (Louis Brandeis, "Judicial opinions", 1932)

"[…] the process of scientific discovery may be regarded as a form of art. This is best seen in the theoretical aspects of Physical Science. The mathematical theorist builds up on certain assumptions and according to well understood logical rules, step by step, a stately edifice, while his imaginative power brings out clearly the hidden relations between its parts. A well-constructed theory is in some respects undoubtedly an artistic production." (Ernest Rutherford, 1932)

"Pure mathematics is, in its way, the poetry of logical ideas. One seeks the most general ideas of operation which will bring together in simple, logical and unified form the largest possible circle of formal relationships. In this effort toward logical beauty spiritual formulas are discovered necessary for the deeper penetration into the laws of nature." (Albert Einstein, [Obituary for Emmy Noether], 1935)

"It will probably be the new mathematical discoveries which are suggested through physics that will always be the most important, for, from the beginning Nature has led the way and established the pattern which mathematics, the Language of Nature, must follow." (George D Birkhoff, "Mathematical Nature of Physical Theories" American Scientific Vol. 31 (4), 1943)

04 October 2019

On Truth (1990-1999)

“[…] mystery is an inescapable ingredient of mathematics. Mathematics is full of unanswered questions, which far outnumber known theorems and results. It’s the nature of mathematics to pose more problems than it can solve. Indeed, mathematics itself may be built on small islands of truth comprising the pieces of mathematics that can be validated by relatively short proofs. All else is speculation.” (Ivars Peterson, “Islands of Truth”, 1990)

"It is often the scientist’s experience that he senses the nearness of truth when such connections are envisioned. A connection is a step toward simplification, unification. Simplicity is indeed often the sign of truth and a criterion of beauty.” (Mahlon B Hoagland, “Toward the Habit of Truth”, 1990)

"It is not merely the truth of science that makes it beautiful, but its simplicity.” (Walker Percy, “Signposts in a Strange Land”, 1991)

"When a theory is sufficiently general to cover many fields of application, it acquires some 'truth' from each of them. Thus [...] a positive value for generalization in mathematics." (Richard W Hamming, "Methods of Mathematics Applied to Calculus, Probability, and Statistics", 1985)

"Mathematics is good for the soul, getting things right enlivens a sense of truth, efforts to understand automatically purify desires." (Iris Murdoch, "Metaphysics As A Guide To Morals", 1992)

"[...] there is no criterion for appreciation which does not vary from one epoch to another and from one mathematician to another. [...] These divergences in taste recall the quarrels aroused by works of art, and it is a fact that mathematicians often discuss among themselves whether a theorem is more or less ‚beautiful‘. This never fails to surprise practitioners of other sciences: for them the sole criterion is the 'truth' of a theory or formula." (Jean Dieudonné, "Mathematics - The Music of Reason", 1992)

“Pedantry and sectarianism aside, the aim of theoretical physics is to construct mathematical models such as to enable us, from the use of knowledge gathered in a few observations, to predict by logical processes the outcomes in many other circumstances. Any logically sound theory satisfying this condition is a good theory, whether or not it be derived from ‘ultimate’ or ‘fundamental’ truth.” (Clifford Truesdell and Walter Noll, “The Non-Linear Field Theories of Mechanics” 2nd Ed., 1992)

"Mathematics is one of the surest ways for a man to feel the power of thought and the magic of the spirit. Mathematics is one of the eternal truths and, as such, raises the spirit to the same level on which we feel the presence of God." (Malba Tahan & Patricia R Baquero, “The Man Who Counted”, 1993)

"Science undercuts ethics because we have made science the measure of all things. Truth means truth of science. Truth means logical truth or factual truth. Truth means math proof or data test. The truth can be a matter of degree. But that does not help ethics." (Bart Kosko, "Fuzzy Thinking: The new science of fuzzy logic", 1993)

"Somewhere in the process wishful thinking seems to take over. Scientists start to believe they do math when they do science. This holds to greatest degree in an advanced science like physics or at the theoretical frontier of any science where the claims come as math claims. The first victim is truth. What was inaccurate or fuzzy truth all along gets bumped up a letter grade to the all-or-none status of binary logic. Most scientists draw the line at giving up the tentative status of science. They will concede that it can all go otherwise in the next experiment. But most have crossed the bivalent line by this point and believe that in the next experiment a statement or hypothesis or theory may jump from TRUE to FALSE, from 1 to 0." (Bart Kosko, "Fuzzy Thinking: The new science of fuzzy logic", 1993)

"Truth is also where formal fuzzy logic begins. The mismatch problem - gray world but black-white scientific description - reduces to a truth problem, the problem of gray truth. The bivalence of modem science ignores or denies or whitewashes and blackwashes gray truth. That tactic leads to paradoxes and self-contradictions. The fuzzy view says almost all truth is gray truth, partial truth, fractional truth, fuzzy truth. It lets math truths remain black or white as extreme cases of gray." (Bart Kosko, "Fuzzy Thinking: The new science of fuzzy logic", 1993)

"The principle of science, the definition, almost, is the following: The test of all knowledge is experiment. Experiment is the sole judge of scientific ‘truth’." (Richard Feynman, "Six Easy Pieces", 1994)

"[…] equations are like poetry: They speak truths with a unique precision, convey volumes of information in rather brief terms, and often are difficult for the uninitiated to comprehend." (Michael Guillen, "Five Equations That Changed the World", 1995)

"In many ways, the mathematical quest to understand infinity parallels mystical attempts to understand God. Both religions and mathematics attempt to express the relationships between humans, the universe, and infinity. Both have arcane symbols and rituals, and impenetrable language. Both exercise the deep recesses of our mind and stimulate our imagination. Mathematicians, like priests, seek ‘ideal’, immutable, nonmaterial truths and then often try to apply theses truth in the real world.” (Clifford A Pickover, "The Loom of God: Mathematical Tapestries at the Edge of Time", 1997)

"Math has its own inherent logic, its own internal truth. Its beauty lies in its ability to distill the essence of truth without the messy interference of the real world. It’s clean, neat, above it all. It lives in an ideal universe built on the geometer’s perfect circles and polygons, the number theorist’s perfect sets. It matters not that these objects don’t exist in the real world. They are articles of faith." (K C Cole, "The Universe and the Teacup: The Mathematics of Truth and Beauty", 1997)

"Mathematical logic deals not with the truth but only with the game of truth.” (Gian-Carlo Rota, “Indiscrete Thoughts”, 1997)

“Mathematical beauty and mathematical truth share the fundamental property of objectivity, that of being inescapably context-dependent. Mathematical beauty and mathematical truth, like any other objective characteristics of mathematics, are subject to the laws of the real world, on a par with the laws of physics.” (Gian-Carlo Rota, “The Phenomenology of Mathematical Beauty”, 1997)

“Mathematical truth is found to exceed the proving of theorems and to elude total capture in the confining meshes of any logical net.” (John Polkinghorne, “Belief in God in an Age of Science”, 1998)

“Mathematics has no privileged road to the truth.”(Donald C Benson, “The Moment of Proof: Mathematical Epiphanies”, 1999)

15 July 2019

Pierre-Simon Laplace - Collected Quotes

"If an event can be produced by a number n of different causes, the probabilities of the existence of these causes, given the event (prises de l'événement), are to each other as the probabilities of the event, given the causes: and the probability of each cause is equal to the probability of the event, given that cause, divided by the sum of all the probabilities of the event, given each of the causes.” (Pierre-Simon Laplace, "Mémoire sur la Probabilité des Causes par les Événements", 1774)

"The word ‘chance’ then expresses only our ignorance of the causes of the phenomena that we observe to occur and to succeed one another in no apparent order. Probability is relative in part to this ignorance, and in part to our knowledge.” (Pierre-Simon Laplace, "Mémoire sur les Approximations des Formules qui sont Fonctions de Très Grands Nombres", 1783)


"[It] may be laid down as a general rule that, if the result of a long series of precise observations approximates a simple relation so closely that the remaining difference is undetectable by observation and may be attributed to the errors to which they are liable, then this relation is probably that of nature.” (Pierre-Simon Laplace, "Mémoire sur les Inégalites Séculaires des Planètes et des Satellites”, 1787)

"The algebraic analysis soon makes us forget the main object [of our researches] by focusing our attention on abstract combinations and it is only at the end that we return to the original objective. But in abandoning oneself to the operations of analysis, one is led to the generality of this method and the inestimable advantage of transforming the reasoning by mechanical procedures to results often inaccessible by geometry. Such is the fecundity of the analysis that it suffices to translate into this universal language particular truths In order to see emerge from their very expression a multitude of new and unexpected truths. No other language has the capacity for the elegance that arises from a long sequence of expressions linked one to the other and all stemming from one fundamental idea. Therefore the geometers [mathematicians] of this century convinced of its superiority have applied themselves primarily to extending Its and pushing back its bounds." (Pierre-Simon Laplace, "Exposition du system du monde" ["Explanation on the solar system"], 1796)

"Surrounded as we are by an infinite variety of phenomena, which continually succeed each other in the heavens and on the earth, philosophers have succeeded in recognizing the small number of general laws to which matter is subject in its motions. To them, all nature is obedient; and everything is as necessarily derived from them, as the return of the seasons; so that the curve which is described by the lightest atom that seems to be driven at random by the winds, is regulated by laws as certain as those which confine the planets to their orbits." (Pierre-Simon Laplace, "System of the World" Vol. 1, 1809)

"If we seek a cause wherever we perceive symmetry, it is not that we regard a symmetrical event as less possible than the others, but, since this event ought to be the effect of a regular cause or that of chance, the first of these suppositions is more probable than the second.” (Pierre-Simon de Laplace, "Philosophical Essay on Probabilities”, 1812) 


"The most important questions of life are indeed, for the most part, really only problems of probability.” (Pierre-Simon Laplace, "Analytical Theory of Probability, 1812)


"The theory of probabilities is at bottom nothing but common sense reduced to calculus; it enables us to appreciate with exactness that which accurate minds feel with a sort of instinct for which of times they are unable to account.” (Pierre-Simon Laplace, "Analytical Theory of Probability, 1812)

"Analysis and natural philosophy owe their most important discoveries to this fruitful means, which is called induction. Newton was indebted to it for his theorem of the binomial and the principle of universal gravity." (Pierre-Simon Laplace, "Philosophical Essay on Probabilities”, 1814)

"One of the great advantages of the calculus of probabilities is to teach us to distrust first opinions." (Pierre-Simon Laplace, "Philosophical Essay on Probabilities", 1814)

"One may even say, strictly speaking, that almost all our knowledge is only probable; and in the small number of things that we are able to know with certainty, in the mathematical sciences themselves, the principal means of arriving at the truth - induction and analogy - are based on probabilities, so that the whole system of human knowledge is tied up with the theory set out in this essay." (Pierre-Simon Laplace, "Philosophical Essay on Probabilities", 1814)


"Probability has reference partly to our ignorance, partly to our knowledge [..] The theory of chance consists in reducing all the events of the same kind to a certain number of cases equally possible, that is to say, to such as we may be equally undecided about in regard to their existence, and in determining the number of cases favorable to the event whose probability is sought. The ratio of this number to that of all cases possible is the measure of this probability, which is thus simply a fraction whose number is the number of favorable cases and whose denominator is the number of all cases possible." (Pierre-Simon Laplace, "Philosophical Essay on Probabilities", 1814)

"In the game of heads and tails, if head comes up a hundred times in a row then this appears to us extraordinary, because after dividing the nearly infinite number of combinations that can arise in a hundred throws into regular sequences, or those in which we observe a rule that is easy to grasp, and into irregular sequences, the latter are incomparably more numerous." (Pierre-Simon Laplace, "A Philosophical Essay on Probability Theories", 1951)

"[…] we must not measure the simplicity of the laws of nature by our facility of conception; but when those which appear to us the most simple, accord perfectly with observations of the phenomena, we are justified in supposing them rigorously exact.” (Pierre-Simon Laplace)

"All the effects of nature are only mathematical results of a small number of immutable laws." (Pierre-Simon de Laplace)

"Such is the advantage of a well-constructed language that its simplified notation often becomes the source of profound theories.” (Pierre-Simon Laplace)


"The present state of the system of nature is evidently a consequence of what is in the preceding moment, and if we conceive of an intelligence which at a given instant knew all the forces acting in nature and the position of every object in the universe - if endowed with a brain sufficiently vast to make all necessary calculations - could describe with a single formula the motions of the largest astronomical bodies and those of the smallest atoms. To such an intelligence, nothing would be uncertain; the future, like the past, would be an open book." (Pierre-Simon Laplace)

14 July 2019

On Complex Numbers VI

"We do not perceive any quantity such as that its square is negative!" (Bhāskara II, "Bijaganita", 12th century)

"These Imaginary Quantities (as they are commonly called) arising from the Supposed Root of a Negative Square (when they happen,) are reputed to imply that the Case proposed is Impossible. And so indeed it is, as to the first and strict notion of what is proposed. For it is not possible that any Number (Negative or Affirmative) Multiplied into it- self can produce (for instance) -4. Since that Like Signs (whether + or -) will produce +; and there- fore not -4. But it is also Impossible that any Quantity (though not a Supposed Square) can be Negative. Since that it is not possible that any Magnitude can be Less than Nothing or any Number Fewer than None. Yet is not that Supposition(of Negative Quantities,) either Unuseful or Absurd; when rightly understood. And though, as to the bare Algebraick Notation, it import a Quantity less than nothing. Yet, when it comes to a Physical Application, it denotes as Real a Quantity as if the Sign were +; but to be interpreted in a contrary sense." (John Wallis, in "Treatise of Algebra", 1685)

“Even zero and complex numbers are not excluded from the signification of a variable quantity.” (Leonhard Euler, “Introductio in Analysin Infinitorum” Vol. I, 1748)

“Number theory is revealed in its entire simplicity and natural beauty when the field of arithmetic is extended to the imaginary numbers” (Carl F Gauss, “Disquisitiones arithmeticae” [“Arithmetical Researches”], 1801)

"Whether or not I have found a logic, by the role of which operations with imaginary quantities are conducted, is not now the question. but surely this is evident that since they lead to right conclusions they must have a logic! […] Till the doctrines of negative and imaginary quantities are better taught than they are at present taught in the University of Cambridge, I agree with you that they had better not be taught [...]" (Robert Woodhouse, [letter to Baron Meseres] 1801)

“At the beginning I would ask anyone who wants to introduce a new function in analysis to clarify whether he intends to confine it to real magnitudes (real values of the argument) and regard the imaginary values as just vestigial –or whether he subscribes to my fundamental proposition that in the realm of magnitudes the imaginary ones a+b√−1 = a+bi have to be regarded as enjoying equal rights with the real ones. We are not talking about practical utility here; rather analysis is, to my mind, a self-sufficient science. It would lose immeasurably in beauty and symmetry from the rejection of any fictive magnitudes. At each stage truths, which otherwise are quite generally valid, would have to be encumbered with all sorts of qualifications. “ (Carl F Gauss, [letter to Bessel,] 1811)

"Our general arithmetic, so far surpassing in extent the geometry of the ancients, is entirely the creation of modern times. Starting originally from the notion of absolute integers, it has gradually enlarged its domain. To integers have been added fractions, to rational quantities the irrational, to positive the negative .and to the real the imaginary. This advance, however, has always been made at first with timorous and hesitating step. The early algebraists called the negative roots of equations false roots, and these are indeed so when the problem to which they relate has been stated in such a form that the character of the quantity sought allows of no opposite. But just as in general arithmetic no one would hesitate to admit fractions, although there are so many countable things where a fraction has no meaning, so we ought not to deny to, negative numbers the rights accorded to positive simply because innumerable things allow no opposite. The reality of negative numbers is sufficiently justified since in innumerable other cases they find an adequate substratum. This has long been admitted, but the imaginary quantities - formerly and occasionally now, though improperly, called impossible-as opposed to real quantities are still rather tolerated than fully naturalized, and appear more like an empty play upon symbols to which a thinkable substratum is denied unhesitatingly by those who would not depreciate the rich contribution which this play upon symbols has made to the treasure of the relations of real quantities." (Carl F Gauss, "Theoria residuorum biquadraticorum, Commentatio secunda", Göttingische gelehrte Anzeigen, 1831)

“The origin and the immediate purpose for the introduction of complex number into mathematics is the theory of creating simpler dependency laws (slope laws) between complex magnitudes by expressing these laws through numerical operations. And, if we give these dependency laws an expanded range by assigning complex values to the variable magnitudes, on which the dependency laws are based, then what makes its appearance is a harmony and regularity which is especially indirect and lasting.” (Bernhard Riemann, “Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse”, 1851)

“The difficulties which so many have felt in the doctrine of Negative and Imaginary Quantities in Algebra forced themselves long ago on my attention […] And while agreeing with those who had contended that negatives and imaginaries were not properly quantities at all, I still felt dissatisfied with any view which should not give to them, from the outset, a clear interpretation and meaning [...] It early appeared to me that these ends might be attained by our consenting to regard Algebra as being no mere Art, nor Language, nor primarily a Science of Quantity; but rather as the Science of Order in Progression.” (William R Hamilton, “Lectures on Quaternions: Containing a Systematic Statement of a New Mathematical Method… “, 1853) 

“The reason and the immediate purpose for the introduction of complex quantities into mathematics lie in the theory of uniform relations between variable quantities which are expressed by simple mathematical formulas. Using these relations in an extended sense, by giving complex values to the variable quantities involved, we discover in them a hidden harmony and regularity that would otherwise remain hidden.” (Bernhard Riemann, “Gesammelte Mathematische Werke”)

18 June 2019

Mathematical Truth II

“The mathematician is perfect only in so far as he is a perfect man, in so far as he senses in himself the beauty of truth; only then will his work be thorough, transparent, prudent, pure, clear, graceful, indeed elegant.” (Plato)

"In Pure Mathematics, where all the various truths are necessarily connected with each other, (being all necessarily connected with those hypotheses which are the principles of the science), an arrangement is beautiful in proportion as the principles are few; and what we admire perhaps chiefly in the science, is the astonishing variety of consequences which may be demonstrably deduced from so small a number of premises.” (Dugald Stewart, “Elements of the Philosophy of the Human Mind" Vol. 3, 1827)

“The aim of proof is, in fact, not merely to place the truth of a proposition beyond all doubt, but also to afford us insight into the dependence of one truth upon another After we have convinced ourselves that a boulder is immovable, by trying unsuccessfully to move it, there remains the further question, what is it that supports it so securely." (Gottlob Frege, "The Foundations of Arithmetic", 1884)

“It always seems to me absurd to speak of a complete proof, or of a theorem being rigorously demonstrated. An incomplete proof is no proof, and a mathematical truth not rigorously demonstrated is not demonstrated at all.” (James J Sylvester, "On certain inequalities related to prime numbers",  Nature Vol. 38, 1888)

"The world of ideas which it [mathematics] discloses or illuminates, the contemplation of divine beauty and order which it induces, the harmonious connection of its parts, the infinite hierarchy and absolute evidence of the truths with which mathematical science is concerned, these, and such like, are the surest groimds of its title of human regard, and would remain unimpaired were the plan of the universe unrolled like a map at our feet, and the mind of man qualified to take in the whole scheme of creation at a glance.” (James J Sylvester, "A Plea for the Mathematician", Nature, 1908)

"Every definition implies an axiom, since it asserts the existence of the object defined. The definition then will not be justified, from the purely logical point of view, until we have proved that it involves no contradiction either in its terms or with the truths previously admitted." (Henri Poincaré," Science and Method", 1908)

“[…] because mathematics contains truth, it extends its validity to the whole domain of art and the creatures of the constructive imagination.” (James B Shaw, “Lectures on the Philosophy of Mathematics”, 1918)

"The axioms and provable theorems (i.e. the formulas that arise in this alternating game [namely formal deduction and the adjunction of new axioms]) are images of the thoughts that make up the usual procedure of traditional mathematics; but they are not themselves the truths in the absolute sense. Rather, the absolute truths are the insights (Einsichten) that my proof theory furnishes into the provability and the consistency of these formal systems." (David Hilbert; “Die logischen Grundlagen der Mathematik.“ Mathematische Annalen 88 (1), 1923)

“Mathematics is the science of number and space. It starts from a group of self-evident truths and by infallible deduction arrives at incontestable conclusions […] the facts of mathematics are absolute, unalterable, and eternal truths.” (E Russell Stabler, “An Interpretation and Comparison of Three Schools of Thought in the Foundations of Mathematics”, The Mathematics Teacher Vol 26, 1935)

02 June 2019

What is Mathematics not? - Part II

“Mathematics is not a popular subject, even though its importance may be generally conceded. The reason for this is to be found in the common superstition that mathematics is but a continuation, a further development, of the fine art of arithmetic, of juggling with numbers.” (David Hilbert, “Geometry and the Imagination”, 1952)

“Mathematics is not only the model along the lines of which the exact sciences are striving to design their structure; mathematics is the cement which holds the structure together.” (Tobias Dantzig, “Number: The Language of Science”, 1954)

“Mathematics is not, then, merely a bunch of calculations that could be done much faster and better by an electronic machine; nor is it a science developed in ancient times, with nothing added to it since then except a bit of polish here and there .” (C Stanley Ogilvy, “Excursions in Mathematics”, 1956)

“The eternal lesson is that Mathematics is not something static, closed, but living and developing. Try as we may to constrain it into a closed form, it finds an outlet somewhere and escapes alive.” (Péter Rózsa, “Playing with Infinity”, 1961)

“Mathematics is not a question of calculation perforce but rather the presence of royalty: a law of infinite resonance, consonance and order.” (Le Corbusier, "Architecture and the Mathematical Spirit", 1962)

“[…] although mathematical concepts and operations are formulated to represent aspects of the physical world, mathematics is not to be identified with the physical world. However, it tells us a good deal about that world if we are careful to apply it and interpret it properly.” (Morris Kline, “Mathematics for the Nonmathematician”, 1967)

“[…] mathematics is not portraying laws inherent in the design of the universe but is merely providing man-made schemes or models which we can use to deduce conclusions about our world only to the extent that the model is a good idealization.” (Morris Kline, “Mathematics for the Nonmathematician”, 1967)

“The introduction and gradual acceptance of concepts that have no immediate counterparts in the real world certainly forced the recognition that mathematics is a human, somewhat arbitrary creation, rather than an idealization of the realities in nature, derived solely from nature. But accompanying this recognition and indeed propelling its acceptance was a more profound discovery - mathematics is not a body of truths about nature.” (Morris Kline, “Mathematical Thought from Ancient to Modern Times” Vol. III, 1972)

“Mathematics is not a compendium or memorizable formula and magically manipulated figures.” (Scott Buchanan, “Poetry and Mathematics”, 1975)

"The essence of mathematics is not to make simple things complicated, but to make complicated things simple." (Stan Gudder, “A Mathematical Journey”, 1976)

 “Mathematics is not a branch of aesthetics. The mistake, which is common enough, probably stems from the requirement of aesthetic unity but is not identical with that unity.” (J K Feibleman, “Assumptions of Grand Logics”, 1979)
 

09 May 2019

On Proofs (1850-1899)

"It is easily seen from a consideration of the nature of demonstration and analysis that there can and must be truths which cannot be reduced by any analysis to identities or to the principle of contradiction but which involve an infinite series of reasons which only God can see through." (Gottfried W Leibniz, "Nouvelles lettres et opuscules inédits", 1857)

"We must never assume that which is incapable of proof.”  (George H Lewes, “The Physiology of Common Life” Vol. 2, 1860)

"Few will deny that even in the first scientific instruction in mathematics the most rigorous method is to be given preference over all others. Especially will every teacher prefer a consistent proof to one which is based on fallacies or proceeds in a vicious circle, indeed it will be morally impossible for the teacher to present a proof of the latter kind consciously and thus in a sense deceive his pupils. Notwithstanding these objectionable so-called proofs, so far as the foundation and the development of the system is concerned, predominate in our textbooks to the present time. Perhaps it will be answered, that rigorous proof is found too difficult for the pupil’s power of comprehension. Should this be anywhere the case, - which would only indicate some defect in the plan or treatment of the whole, - the only remedy would be to merely state the theorem in a historic way, and forego a proof with the frank confession that no proof has been found which could be comprehended by the pupil; a remedy which is ever doubtful and should only be applied in the case of extreme necessity. But this remedy is to be preferred to a proof which is no proof, and is therefore either wholly unintelligible to the pupil, or deceives him with an appearance of knowledge which opens the door to all superficiality and lack of scientific method." (Hermann G Grassmann, "Stücke aus dem Lehrbuche der Arithmetik", 1861)

"The mathematician starts with a few propositions, the proof of which is so obvious that they are called self-evident, and the rest of his work consists of subtle deductions from them. The teaching of languages, at any rate as ordinarily practised, is of the same general nature: authority and tradition furnish the data, and the mental operations are deductive." (Thomas H Huxley, 1869)

“Simplification of modes of proof is not merely an indication of advance in our knowledge of a subject, but is also the surest guarantee of readiness for farther progress.“ (Lord Kelvin, “Elements of Natural Philosophy”, 1873)

“’Divide et impera’ is as true in algebra as in statecraft; but no less true and even more fertile is the maxim ‘auge et impera’. The more to do or to prove, the easier the doing or the proof.” (James J Sylvester, “Proof of the Fundamental Theorem of Invariants”, Philosophic Magazine, 1878)

"The aim of proof is, in fact, not merely to place the truth of a proposition beyond all doubt, but also to afford us insight into the dependence of one truth upon another. After we have convinced ourselves that a boulder is immovable, by trying unsuccessfully to move it, there remains the further question, what is it that supports it so securely." (Gottlob Frege," The Foundations of Arithmetic", 1884)

“That which is provable, ought not to be believed in science without proof” (Richard Dedekind, “Was sind und was sollen die Zahlen?”, 1888)

“Pure mathematics proves itself a royal science both through its content and form, which contains within itself the cause of its being and its methods of proof. For in complete independence mathematics creates for itself the object of which it treats, its magnitudes and laws, its formulas and symbols.” (Christian H Dillmann, „Die Mathematik die Fackelträgerin einer neuen Zeit“, 1889)

“If men of science owe anything to us, we may learn much from them that is essential. For they can show how to test proof, how to secure fulness and soundness in induction, how to restrain and to employ with safety hypothesis and analogy.” (Lord John Acton, [Lecture] “The Study of History”, 1895)

“The folly of mistaking a paradox for a discovery, a metaphor for a proof, a torrent of verbiage for a spring of capital truths, and oneself for an oracle, is inborn in us.” (Paul Valéry, 1895)

"Just give me the insights. I can always come up with the proofs!" (Bernhard Riemann)

"Analogy cannot serve as proof." (Louis Pasteur)

See also:
Proofs I, II, III, IV, VI, VII, VIII, IX
Theorems I, II, III, IV, V, VI, VII, VIII, IX, X
Related Posts Plugin for WordPress, Blogger...

On Leonhard Euler

"I have been able to solve a few problems of mathematical physics on which the greatest mathematicians since Euler have struggled in va...