Showing posts with label curvature. Show all posts
Showing posts with label curvature. Show all posts

14 April 2022

On Curvature I

"In order to know the curvature of a curve, the determination of the radius of the osculating circle furnishes us the best measure, where for each point of the curve we find a circle whose curvature is precisely the same. However, when one looks for the curvature of a surface, the question is very equivocal and not at all susceptible to an absolute response, as in the case above. There are only spherical surfaces where one would be able to measure the curvature, assuming the curvature of the sphere is the curvature of its great circles, and whose radius could be considered the appropriate measure. But for other surfaces one doesn’t know even how to compare a surface with a sphere, as when one can always compare the curvature of a curve with that of a circle. The reason is evident, since at each point of a surface there are an infinite number of different curvatures. One has to only consider a cylinder, where along the directions parallel to the axis, there is no curvature, whereas in the directions perpendicular to the axis, which are circles, the curvatures are all the same, and all other oblique sections to the axis give a particular curvature. It’s the same for all other surfaces, where it can happen that in one direction the curvature is convex, and in another it is concave, as in those resembling a saddle." (Leonhard Euler, "Recherches sur la courbure des surfaces", 1767)

"Arc, amplitude, and curvature sustain a similar relation to each other as time, motion, and velocity, or as volume, mass, and density." (Carl Friedrich Gauss, 1827)

"In the extension of space-construction to the infinitely great, we must distinguish between unboundedness and infinite extent; the former belongs to the extent relations, the latter to the measure-relations. That space is an unbounded threefold manifoldness, is an assumption which is developed by every conception of the outer world; according to which every instant the region of real perception is completed and the possible positions of a sought object are constructed, and which by these applications is forever confirming itself. The unboundedness of space possesses in this way a greater empirical certainty than any external experience. But its infinite extent by no means follows from this; on the other hand if we assume independence of bodies from position, and therefore ascribe to space constant curvature, it must necessarily be finite provided this curvature has ever so small a positive value. If we prolong all the geodesies starting in a given surface-element, we should obtain an unbounded surface of constant curvature, i.e., a surface which in a flat manifoldness of three dimensions would take the form of a sphere, and consequently be finite." (Bernhard Riemann, "On the hypotheses which lie at the foundation of geometry", 1854)

"I hold: 1) that small portions of space are, in fact, of a nature analogous to little hills on a surface that is on the average fiat; namely, that the ordinary laws of geometry are not valid in them; 2) that this property of being curved or distorted is constantly being passed on from one portion of space to another after the manner of a wave; 3) that this variation of the curvature of space is what really happens in the phenomenon that we call the motion of matter, whether ponderable or ethereal; 4) that in the physical world nothing else takes place but this variation, subject (possibly) to the law of continuity." (William K Clifford, "On the Space Theory of Matter", [paper delivered before the Cambridge Philosophical Society, 1870) 

"Riemann has shewn that as there are different kinds of lines and surfaces, so there are different kinds of space of three dimensions; and that we can only find out by experience to which of these kinds the space in which we live belongs. In particular, the axioms of plane geometry are true within the limits of experiment on the surface of a sheet of paper, and yet we know that the sheet is really covered with a number of small ridges and furrows, upon which (the total curvature not being zero) these axioms are not true. Similarly, he says although the axioms of solid geometry are true within the limits of experiment for finite portions of our space, yet we have no reason to conclude that they are true for very small portions; and if any help can be got thereby for the explanation of physical phenomena, we may have reason to conclude that they are not true for very small portions of space." (William K Clifford, "On the Space Theory of Matter", [paper delivered before the Cambridge Philosophical Society, 1870) 

"We may conceive our space to have everywhere a nearly uniform curvature, but that slight variations of the curvature may occur from point to point, and themselves vary with the time. These variations of the curvature with the time may produce effects which we not unnaturally attribute to physical causes independent of the geometry of our space. We might even go so far as to assign to this variation of the curvature of space 'what really happens in that phenomenon which we term the motion of matter'." (William K Clifford, Richard C Rowe & Karl Pearson,"The Common Sense of the Exact Sciences", 1885)

"Mathematics accomplishes really nothing outside of the realm of magnitude; marvellous, however, is the skill with which it masters magnitude wherever it finds it. We recall at once the network of lines which it has spun about heavens and earth; the system of lines to which azimuth and altitude, declination and right ascension, longitude and latitude are referred; those abscissas and ordinates, tangents and normals, circles of curvature and evolutes; those trigonometric and logarithmic functions which have been prepared in advance and await application. A look at this apparatus is sufficient to show that mathematicians are not magicians, but that everything is accomplished by natural means; one is rather impressed by the multitude of skillful machines, numerous witnesses of a manifold and intensely active industry, admirably fitted for the acquisition of true and lasting treasures."(Johann F Herbart, 1890)

"[...]  the illustration of a space of constant positive measure of curvature by the familiar example of the sphere is somewhat misleading.  Owing to the fact that on the sphere the geodesic lines (great circles) issuing from any point all meet again in another definite point, antipodal, so to speak, to the original point, the existence of such an antipodal point has sometimes been regarded as a necessary consequence of the assumption of a constant positive curvature. The projective theory of non-Euclidean space shows immediately that the existence of an antipodal point, though compatible with the nature of an elliptic space, is not necessary, but that two geodesic lines in such a space may intersect in one point if at all." (Felix Klein, "The Most Recent Researches in Non-Euclidian Geometry", [lecture] 1893)

28 January 2021

On Manifolds II (Geometry II)

"In the extension of space-construction to the infinitely great, we must distinguish between unboundedness and infinite extent; the former belongs to the extent relations, the latter to the measure-relations. That space is an unbounded threefold manifoldness, is an assumption which is developed by every conception of the outer world; according to which every instant the region of real perception is completed and the possible positions of a sought object are constructed, and which by these applications is forever confirming itself. The unboundedness of space possesses in this way a greater empirical certainty than any external experience. But its infinite extent by no means follows from this; on the other hand if we assume independence of bodies from position, and therefore ascribe to space constant curvature, it must necessarily be finite provided this curvature has ever so small a positive value. If we prolong all the geodesies starting in a given surface-element, we should obtain an unbounded surface of constant curvature, i.e., a surface which in a flat manifoldness of three dimensions would take the form of a sphere, and consequently be finite." (Bernhard Riemann, "On the hypotheses which lie at the foundation of geometry", 1854)

"If in the case of a notion whose specialisations form a continuous manifoldness, one passes from a certain specialisation in a definite way to another, the specialisations passed over form a simply extended manifoldness, whose true character is that in it a continuous progress from a point is possible only on two sides, forwards or backwards. If one now supposes that this manifoldness in its turn passes over into another entirely different, and again in a definite way, namely so that each point passes over into a definite point of the other, then all the specialisations so obtained form a doubly extended manifoldness. In a similar manner one obtains a triply extended manifoldness, if one imagines a doubly extended one passing over in a definite way to another entirely different; and it is easy to see how this construction may be continued. If one regards the variable object instead of the determinable notion of it, this construction may be described as a composition of a variability of n + 1 dimensions out of a variability of n dimensions and a variability of one dimension." (Bernhard Riemann, "On the Hypotheses which lie at the Bases of Geometry", 1873)

"In a mathematical sense, space is manifoldness, or combination of numbers. Physical space is known as the 3-dimension system. There is the 4-dimension system, there is the 10-dimension system." (Charles P Steinmetz, [New York Times interview] 1911)

"That branch of mathematics which deals with the continuity properties of two- (and more) dimensional manifolds is called analysis situs or topology. […] Two manifolds must be regarded as equivalent in the topological sense if they can be mapped point for point in a reversibly neighborhood-true (topological) fashion on each other." (Hermann Weyl, "The Concept of a Riemann Surface", 1913)

"The power of differential calculus is that it linearizes all problems by going back to the 'infinitesimally small', but this process can be used only on smooth manifolds. Thus our distinction between the two senses of rotation on a smooth manifold rests on the fact that a continuously differentiable coordinate transformation leaving the origin fixed can be approximated by a linear transformation at О and one separates the (nondegenerate) homogeneous linear transformations into positive and negative according to the sign of their determinants. Also the invariance of the dimension for a smooth manifold follows simply from the fact that a linear substitution which has an inverse preserves the number of variables." (Hermann Weyl, "The Concept of a Riemann Surface", 1913)

"In her manifold opportunities Nature has thus helped man to polish the mirror of [man’s] mind, and the process continues. Nature still supplies us with abundance of brain-stretching theoretical puzzles and we eagerly tackle them; there are more worlds to conquer and we do not let the sword sleep in our hand; but how does it stand with feeling? Nature is beautiful, gladdening, awesome, mysterious, wonderful, as ever, but do we feel it as our forefathers did?" (Sir John A Thomson, "The System of Animate Nature", 1920)

"An 'empty world', i. e., a homogeneous manifold at all points at which equations (1) are satisfied, has, according to the theory, a constant Riemann curvature, and any deviation from this fundamental solution is to be directly attributed to the influence of matter or energy." (Howard P Robertson, "On Relativistic Cosmology", 1928)

"Euclidean geometry can be easily visualized; this is the argument adduced for the unique position of Euclidean geometry in mathematics. It has been argued that mathematics is not only a science of implications but that it has to establish preference for one particular axiomatic system. Whereas physics bases this choice on observation and experimentation, i. e., on applicability to reality, mathematics bases it on visualization, the analogue to perception in a theoretical science. Accordingly, mathematicians may work with the non-Euclidean geometries, but in contrast to Euclidean geometry, which is said to be "intuitively understood," these systems consist of nothing but 'logical relations' or 'artificial manifolds'. They belong to the field of analytic geometry, the study of manifolds and equations between variables, but not to geometry in the real sense which has a visual significance." (Hans Reichenbach, "The Philosophy of Space and Time", 1928)

"We must [...] maintain that mathematical geometry is not a science of space insofar as we understand by space a visual structure that can be filled with objects - it is a pure theory of manifolds." (Hans Reichenbach, "The Philosophy of Space and Time", 1928)

"A manifold, roughly, is a topological space in which some neighborhood of each point admits a coordinate system, consisting of real coordinate functions on the points of the neighborhood, which determine the position of points and the topology of that neighborhood; that is, the space is locally cartesian. Moreover, the passage from one coordinate system to another is smooth in the overlapping region, so that the meaning of 'differentiable' curve, function, or map is consistent when referred to either system." (Richard L Bishop & Samuel I Goldberg, "Tensor Analysis on Manifolds", 1968)

"The mathematical models for many physical systems have manifolds as the basic objects of study, upon which further structure may be defined to obtain whatever system is in question. The concept generalizes and includes the special cases of the cartesian line, plane, space, and the surfaces which are studied in advanced calculus. The theory of these spaces which generalizes to manifolds includes the ideas of differentiable functions, smooth curves, tangent vectors, and vector fields. However, the notions of distance between points and straight lines (or shortest paths) are not part of the idea of a manifold but arise as consequences of additional structure, which may or may not be assumed and in any case is not unique." (Richard L Bishop & Samuel I Goldberg, "Tensor Analysis on Manifolds", 1968)

25 January 2021

On Continuity II (Topology)

"Things are called continuous when the touching limits of each become one and the same and are contained in each other. Continuity is impossible if these extremities are two. […] Continuity belongs to things that naturally in virtue of their mutual contact form a unity. And in whatever way that which holds them together is one, so too will the whole be one."(Aristotle, "Physics", cca. 350 BC)

"When what surrounds, then, is not separate from the thing, but is in continuity with it, the thing is said to be in what surrounds it, not in the sense of in place, but as a part in a whole. But when the thing is separate or in contact, it is immediately ‘in’ the inner surface of the surrounding body, and this surface is neither a part of what is in it nor yet greater than its extension, but equal to it; for the extremities of things which touch are coincident." (Aristotle, "Physics", cca. 350 BC)

"I hold: 1) that small portions of space are, in fact, of a nature analogous to little hills on a surface that is on the average fiat; namely, that the ordinary laws of geometry are not valid in them; 2) that this property of being curved or distorted is constantly being passed on from one portion of space to another after the manner of a wave; 3) that this variation of the curvature of space is what really happens in the phenomenon that we call the motion of matter, whether ponderable or ethereal; 4) that in the physical world nothing else takes place but this variation, subject (possibly) to the law of continuity." (William K Clifford, "On the Space Theory of Matter", [paper delivered before the Cambridge Philosophical Society, 1870)

"That branch of mathematics which deals with the continuity properties of two- (and more) dimensional manifolds is called analysis situs or topology. […] Two manifolds must be regarded as equivalent in the topological sense if they can be mapped point for point in a reversibly neighborhood-true (topological) fashion on each other." (Hermann Weyl, "The Concept of a Riemann Surface", 1913)

"In topology we are concerned with geometrical facts that do not even involve the concepts of a straight line or plane but only the continuous connectiveness between points of a figure." (David Hilbert, "Geometry and Imagination", 1952)

"General or point set topology can be thought of as the abstract study of the ideas of nearness and continuity. This is done in the first place by picking out in elementary geometry those properties of nearness that seem to be fundamental and taking them as axioms." (Andrew H Wallace, "Differential Topology: First Steps", 1968)

"The major strength of catastrophe theory is to provide a qualitative topology of the general structure of discontinuities. Its major weakness is that it frequently is not associated with specific models allowing precise quantitative prediction, although such are possible in principle." (J Barkley Rosser Jr., "From Catastrophe to Chaos: A General Theory of Economic Discontinuities", 1991)

"[...] if we consider a topological space instead of a plane, then the question of whether the coordinates axes in that space are curved or straight becomes meaningless. The way we choose coordinate systems is related to the way we observe the property of smoothness in a topological space." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"The property of smoothness includes the property of continuity. The notion of a topological space was born from the development of abstract algebra as a universal notion for the property of continuity." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"A continuous function preserves closeness of points. A discontinuous function maps arbitrarily close points to points that are not close. The precise definition of continuity involves the relation of distance between pairs of points. […] continuity, a property of functions that allows stretching, shrinking, and folding, but preserves the closeness relation among points." (Robert Messer & Philip Straffin, "Topology Now!", 2006)

"Topology is the study of geometric objects as they are transformed by continuous deformations. To a topologist the general shape of the objects is of more importance than distance, size, or angle." (Robert Messer & Philip Straffin, "Topology Now!", 2006)

"[…] topology is the study of those properties of geometric objects which remain unchanged under bi-uniform and bi-continuous transformations. Such transformations can be thought of as bending, stretching, twisting or compressing or any combination of these." (Lokenath Debnath, "The Legacy of Leonhard Euler - A Tricentennial Tribute", 2010)

"Topology is a geometry in which all lengths, angles, and areas can be distorted at will. Thus a triangle can be continuously transformed into a rectangle, the rectangle into a square, the square into a circle, and so on. Similarly, a cube can be transformed into a cylinder, the cylinder into a cone, the cone into a sphere. Because of these continuous transformations, topology is known popularly as 'rubber sheet geometry'. All figures that can be transformed into each other by continuous bending, stretching, and twisting are called 'topologically equivalent'." (Fritjof Capra, "The Systems View of Life: A Unifying Vision", 2014)

"Topology is an elastic version of geometry that retains the idea of continuity but relaxes rigid metric notions of distance." (Samuel Eilenberg)

Related Posts Plugin for WordPress, Blogger...

On Leonhard Euler

"I have been able to solve a few problems of mathematical physics on which the greatest mathematicians since Euler have struggled in va...