Showing posts with label transcendentals. Show all posts
Showing posts with label transcendentals. Show all posts

03 April 2022

On Numbers: Transcedentals

"Since one could directly derive the expansion in series of algebraic functions according to the powers of an increment, the derivatives, and the integral, one not only held that it was possible to assume the existence of such a series, derivative, and integral for all functions in general, but one never even had the idea that herein lay an assertion, whether it now be an axiom or a theorem - so self-evident did the transfer of the properties of algebraic functions to transcendental ones seem in the light of the geometrical view of curves representing functions. And examples in which purely analytic functions displayed singularities that were clearly different from those of algebraic functions remained entirely unnoticed." (Hermann Hankel, 1870)

"As Gauss first pointed out, the problem of cyclotomy, or division of the circle into a number of equal parts, depends in a very remarkable way upon arithmetical considerations. We have here the earliest and simplest example of those relations of the theory of numbers to transcendental analysis, and even to pure geometry, which so often unexpectedly present themselves, and which, at first sight, are so mysterious." (George B Mathews, "Theory of Numbers", 1892)

"The proof that π is a transcendental number will forever mark an epoch in mathematical science. It gives the final answer to the problem of squaring the circle and settles this vexed question once for all. This problem requires to derive the number π by a finite number of elementary geometrical processes, i.e. with the use of the ruler and compasses alone. As a straight line and a circle, or two circles, have only two intersections, these processes, or any finite combination of them, can be expressed algebraically in a comparatively simple form, so that a solution of the problem of squaring the circle would mean that π can be expressed as the root of an algebraic equation of a comparatively simple kind, viz. one that is solvable by square roots." (Felix Klein, "Lectures on Mathematics", 1911)

"The number was first studied in respect of its rationality or irrationality, and it was shown to be really irrational. When the discovery was made of the fundamental distinction between algebraic and transcendental numbers, i. e. between those numbers which can be, and those numbers which cannot be, roots of an algebraical equation with rational coefficients, the question arose to which of these categories the number π belongs. It was finally established by a method which involved the use of some of the most modern of analytical investigation that the number π was transcendental. When this result was combined with the results of a critical investigation of the possibilities of a Euclidean determination, the inferences could be made that the number π, being transcendental, does not admit of a construction either by a Euclidean determination, or even by a determination in which the use of other algebraic curves besides the straight line and the circle are permitted." (Ernest W Hobson, "Squaring the Circle", 1913) 

"The simple algebraic numbers, like √2, seem closest in nature to the rationals, while we might expect that non-algebraic numbers, the transcedentals, to live apart and not to have close rational neighbors. Surprisingly, the opposite is true. On the one hand, it can be proved that any irrational number that can be well-approximated by rationals (in a sense that can be made precise) must be transcendental. Indeed this affords one of the standard techniques for showing that a number is transcendental." (Peter M. Higgins, "Number Story: From Counting to Cryptography", 2008)

"[...] transcendental numbers, those numbers that lie beyond those that arise through euclidean geometry and ordinary algebraic equations. [...] The transcendentals are the numbers that fill the huge void between the more familiar algebraic numbers and the collection of all decimal expansions: to use an astronomical comparison, the transcendentals are the dark matter of the number world." (Peter M Higgins, "Number Story: From Counting to Cryptography", 2008)

"Transcendental numbers then are numerous but exceedingly slippery. As a rule of thumb, a number that arises in mathematics is almost always transcendental unless it is obvious that it is not. However, showing that a particular number is transcendental can be exceedingly difficult. Number theory throws up endless problems of this kind where everyone feels sure what the answer must be but at the same time no-one has any real idea how it could ever by proved." (Peter M. Higgins, "Number Story: From Counting to Cryptography", 2008)

"It turns out π is different. Not only is it incapable of being expressed as a fraction, but in fact π fails to satisfy any algebraic relationship whatsoever. What does π do? It doesn’t do anything. It is what it is. Numbers like this are called transcendental (Latin for 'climbing beyond'). Transcendental numbers - and there are lots of them - are simply beyond the power of algebra to describe." (Paul Lockhart, "Measurement", 2012)

"A transcendental number is defined as a number that isn’t the solution of any polynomial equation with integer constants times the x’s." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

Previous Post <<||>> Next Post

15 June 2021

On Real Numbers I

"Because all conceivable numbers are either greater than zero or less than 0 or equal to 0, then it is clear that the square roots of negative numbers cannot be included among the possible numbers [real numbers]. Consequently we must say that these are impossible numbers. And this circumstance leads us to the concept of such numbers, which by their nature are impossible, and ordinarily are called imaginary or fancied numbers, because they exist only in the imagination." (Leonhard Euler, "Vollständige Anleitung zur Algebra", 1768-69)

"[…] with few exceptions all the operations and concepts that occur in the case of real numbers can indeed be carried over unchanged to complex ones. However, the concept of being greater cannot very well be applied to complex numbers. In the case of integration, too, there appear differences which rest on the multplicity of possible paths of integration when we are dealing with complex variables. Nevertheless, the large extent to which imaginary forms conform to the same laws as real ones justifies the introduction of imaginary forms into geometry." (Gottlob Frege, "On a Geometrical Representation of Imaginary forms in the Plane", 1873)

"Mathematics is a study which, when we start from its most familiar portions, may be pursued in either of two opposite directions. The more familiar direction is constructive, towards gradually increasing complexity: from integers to fractions, real numbers, complex numbers; from addition and multiplication to differentiation and integration, and on to higher mathematics. The other direction, which is less familiar, proceeds, by analyzing, to greater and greater abstractness and logical simplicity." (Bertrand Russell, "Introduction to Mathematical Philosophy", 1919)

"There is more to the calculation of π to a large number of decimal places than just the challenge involved. One reason for doing it is to secure statistical information concerning the 'normalcy' of π. A real number is said to be simply normal if in its decimal expansion all digits occur with equal frequency, and it is said to be normal if all blocks of digits of the same length occur with equal frequency. It is not known if π (or even √2, for that matter) is normal or even simply normal." (Howard Eves, "Mathematical Circles Revisited", 1971)

"Surreal numbers are an astonishing feat of legerdemain. An empty hat rests on a table made of a few axioms of standard set theory. Conway waves two simple rules in the air, then reaches into almost nothing and pulls out an infinitely rich tapestry of numbers that form a real and closed field. Every real number is surrounded by a host of new numbers that lie closer to it than any other 'real' value does. The system is truly 'surreal.'" (Martin Gardner, "Mathematical Magic Show", 1977)

"If explaining minds seems harder than explaining songs, we should remember that sometimes enlarging problems makes them simpler! The theory of the roots of equations seemed hard for centuries within its little world of real numbers, but it suddenly seemed simple once Gauss exposed the larger world of so-called complex numbers. Similarly, music should make more sense once seen through listeners' minds." (Marvin Minsky, "Music, Mind, and Meaning", 1981)

“The letter ‘i’ originally was meant to suggest the imaginary nature of this number, but with the greater abstraction of mathematics, it came to be realized that it was no more imaginary than many other mathematical constructs. True, it is not suitable for measuring quantities, but it obeys the same laws of arithmetic as do the real numbers, and, surprisingly enough, it makes the statement of various physical laws very natural.” (John A Paulos, “Beyond Numeracy”, 1991)

"A real number that satisfies (is a solution of) a polynomial equation with integer coefficients is called algebraic. […] A real number that is not algebraic is called transcendental. There is nothing mystic about this word; it merely indicates that these numbers transcend (go beyond) the realm of algebraic numbers."  (Eli Maor, "e: The Story of a Number", 1994)

"The real numbers are one of the most audacious idealizations made by the human mind, but they were used happily for centuries before anybody worried about the logic behind them. Paradoxically, people worried a great deal about the next enlargement of the number system, even though it was entirely harmless. That was the introduction of square roots for negative numbers, and it led to the 'imaginary' and 'complex' numbers. A professional mathematican should never leave home without them […]" (Ian Stewart, "Nature's Numbers: The unreal reality of mathematics", 1995)

06 June 2021

On Functions I

"Therefore, every intensity which can be acquired successively ought to be imagined by a straight line perpendicularly erected on some point of the space or subject of the intensible thing, e.g., a quality. For whatever ratio is found to exist between intensity and intensity, in relating intensities of the same kind, a similar ratio is found to exist between line and line, and vice versa." (Nicole Oresme, "Tractatus de configurationibus qualitatum et motuum" ["A treatise on the uniformity and difformity of intensities"], 1352) [definition of a functional relationship between two variables]

"Here, we call function of a variable magnitude, a quantity formed in whatever manner with that variable magnitude and constants." (Johann I Bernoulli, 1718)

"A function of a variable quantity is an analytic expression composed in any way whatsoever of the variable quantity and numbers or constant quantities. […] Functions are divided into algebraic and transcendental. The former are those made up from only algebraic operations, the latter are those which involve transcendental operations."(Leonhard Euler, "Introduction to Analysis of the Infinite", 1748)

"Those quantities that depend on others in this way, namely, those that undergo a change when others change, are called functions of these quantities. This definition applies rather widely and includes all ways in which one quantity could be determined by another." (Leonhard Euler, "Foundations of differential calculus, with applications to finite analysis and series", 1755)

"I take the word 'mapping' in the widest possible sense; any point of the spherical surface is represented on the plane by any desired rule, so that every point of the sphere corresponds to a specified point in the plane, and inversely." (Leonhard Euler, "On the representation of Spherical Surfaces onto the Plane", 1777)

"When variable quantities are so tied to each other that, given the values of some of them, we can deduce the values of all the others, we usually conceive these various quantities expressed in terms of several of them, which then bear the name independent variables; and the remaining quantities expressed in terms of the independent variables, are what we call functions of these same variables." (Augustin-Louis Cauchy, "Cours d’analyse de l’École Royale Polytechnique", 1821)

"[…] a function of the variable x will be continuous between two limits a and b of this variable if between two limits the function has always a value which is unique and finite, in such a way that an infinitely small increment of this variable always produces an infinnitely small increment of the function itself." (Augustin-Louis Cauchy, "Mémoire sur les fonctions continues" ["Memoir on continuous functions"], 1844)

"If we designate by z a variable magnitude, which may take successively all possible real values, then, if to each of these values corresponds a unique value of the indeterminate magnitude w, we say that w is a function of z. […] This definition does not stipulate any law between the isolated values of the function, this is evident, because after this function has been dealt with for a given interval, the way it is extended outside this interval remains quite arbitrary." (Bernhard Riemann, 1851)

Related Posts Plugin for WordPress, Blogger...

On Leonhard Euler

"I have been able to solve a few problems of mathematical physics on which the greatest mathematicians since Euler have struggled in va...