Showing posts with label figures. Show all posts
Showing posts with label figures. Show all posts

29 October 2023

Michael J Moroney - Collected Quotes

"A good estimator will be unbiased and will converge more and more closely (in the long run) on the true value as the sample size increases. Such estimators are known as consistent. But consistency is not all we can ask of an estimator. In estimating the central tendency of a distribution, we are not confined to using the arithmetic mean; we might just as well use the median. Given a choice of possible estimators, all consistent in the sense just defined, we can see whether there is anything which recommends the choice of one rather than another. The thing which at once suggests itself is the sampling variance of the different estimators, since an estimator with a small sampling variance will be less likely to differ from the true value by a large amount than an estimator whose sampling variance is large." (Michael J Moroney, "Facts from Figures", 1951)

"A piece of self-deception - often dear to the heart of apprentice scientists - is the drawing of a 'smooth curve' (how attractive it sounds!) through a set of points which have about as much trend as the currants in plum duff. Once this is done, the mind, looking for order amidst chaos, follows the Jack-o'-lantern line with scant attention to the protesting shouts of the actual points. Nor, let it be whispered, is it unknown for people who should know better to rub off the offending points and publish the trend line which their foolish imagination has introduced on the flimsiest of evidence. Allied to this sin is that of overconfident extrapolation, i.e. extending the graph by guesswork beyond the range of factual information. Whenever extrapolation is attempted it should be carefully distinguished from the rest of the graph, e.g. by showing the extrapolation as a dotted line in contrast to the full line of the rest of the graph. [...] Extrapolation always calls for justification, sooner or later. Until this justification is forthcoming, it remains a provisional estimate, based on guesswork." (Michael J Moroney, "Facts from Figures", 1951)

"Data should be collected with a clear purpose in mind. Not only a clear purpose, but a clear idea as to the precise way in which they will be analysed so as to yield the desired information." (Michael J Moroney, "Facts from Figures", 1951)

"For the most part, Statistics is a method of investigation that is used when other methods are of no avail; it is often a last resort and a forlorn hope. A statistical analysis, properly conducted, is a delicate dissection of uncertainties, a surgery of suppositions. The surgeon must guard carefully against false incisions with his scalpel. Very often he has to sew up the patient as inoperable. The public knows too little about the statistician as a conscientious and skilled servant of true science." (Michael J Moroney, "Facts from Figures", 1951)

"It is really questionable - though bordering on heresy to put the question - whether we would be any the worse off if the whole bag of tricks were scrapped. So many of these index numbers are so ancient and so out of date, so out of touch with reality, so completely devoid of practical value when they have been computed, that their regular calculation must be regarded as a widespread compulsion neurosis. Only lunatics and public servants with no other choice go on doing silly things and liking it." (Michael J Moroney, "Facts from Figures", 1951)

"It pays to keep wide awake in studying any graph. The thing looks so simple, so frank, and so appealing that the careless are easily fooled. [...] Data and formulae should be given along with the graph, so that the interested reader may look at the details if he wishes." (Michael J Moroney, "Facts from Figures", 1951)

"It will, of course, happen but rarely that the proportions will be identical, even if no real association exists. Evidently, therefore, we need a significance test to reassure ourselves that the observed difference of proportion is greater than could reasonably be attributed to chance. The significance test will test the reality of the association, without telling us anything about the intensity of association. It will be apparent that we need two distinct things: (a) a test of significance, to be used on the data first of all, and (b) some measure of the intensity of the association, which we shall only be justified in using if the significance test confirms that the association is real." (Michael J Moroney, "Facts from Figures", 1951)

"Some distributions [...] are symmetrical about their central value. Other distributions have marked asymmetry and are said to be skew. Skew distributions are divided into two types. If the 'tail' of the distribution reaches out into the larger values of the variate, the distribution is said to show positive skewness; if the tail extends towards the smaller values of the variate, the distribution is called negatively skew." (Michael J Moroney, "Facts from Figures", 1951)

"The economists, of course, have great fun - and show remarkable skill - in inventing more refined index numbers. Sometimes they use geometric averages instead of arithmetic averages (the advantage here being that the geometric average is less upset by extreme oscillations in individual items), sometimes they use the harmonic average. But these are all refinements of the basic idea of the index number [...]" (Michael J Moroney, "Facts from Figures", 1951)

"The mode would form a very poor basis for any further calculations of an arithmetical nature, for it has deliberately excluded arithmetical precision in the interests of presenting a typical result. The arithmetic average, on the other hand, excellent as it is for numerical purposes, has sacrificed its desire to be typical in favour of numerical accuracy. In such a case it is often desirable to quote both measures of central tendency." (Michael J Moroney, "Facts from Figures", 1951)

"The statistician’s job is to draw general conclusions from fragmentary data. Too often the data supplied to him for analysis are not only fragmentary but positively incoherent, so that he can do next to nothing with them. Even the most kindly statistician swears heartily under his breath whenever this happens". (Michael J Moroney, "Facts from Figures", 1951)

"Undoubtedly one of the most elegant, powerful, and useful techniques in modern statistical method is that of the Analysis of Variation and Co-variation by which the total variation in a set of data may be reduced to components associated with possible sources of variability whose relative importance we wish to assess. The precise form which any given analysis will take is intimately connected with the structure of the investigation from which the data are obtained. A simple structure will lead to a simple analysis; a complex structure to a complex analysis." (Michael J Moroney, "Facts from Figures", 1951)

"When the mathematician speaks of the existence of a 'functional relation' between two variable quantities, he means that they are connected by a simple 'formula that is to say, if we are told the value of one of the variable quantities we can find the value of the second quantity by substituting in the formula which tells us how they are related. [...] The thing to be clear about before we proceed further is that a functional relationship in mathematics means an exact and predictable relationship, with no ifs or buts about lt. It is useful in practice so long as the ifs and buts are only tiny voices which even the most ardent protagonist of proportional representation can ignore with a clear conscience." (Michael J Moroney, "Facts from Figures", 1951)

23 September 2023

On Graphics VI: Trivia

"Mathematicians have sought knowledge in figures, Philosophers in systems, Logicians in subtleties, and Metaphysicians in sounds. It is not in any nor in all of these. He that studies only men, will get the body of knowledge without the soul, and he that studies only books, the soul without the body." (Charles C Colton, "Lacon: Many Things in Few Words", 1820)

"[...] we can not readily break up a complicated problem into successive steps which can be taken independently. We have, in fact, to solve the problem first, by determining what are the actual mutual relations of the classes involved, and then to draw the circles to represent this final result; we cannot work step-by-step towards the conclusion by aid of our figures." (John Venn, "On the Diagrammatic and Mechanical Representation of Propositions and Reasonings", 1880)

"Whereas in meaningful arithmetic equations and inequations are sentences expressing thoughts, in formal arithmetic they are comparable with the positions of chess pieces, transformed in accordance with certain rules without considerations for any sense. For if they were viewed as having sense, the rules could not be arbitrarily stipulated; they would have to be so chosen that from formulas expressing true propositions could be derived only formulas likewise expressing true propositions. Then the standpoint of formal arithmetic would have to be abandoned, which insists that the rules for the manipulation of signs are quite arbitrarily stipulated. Only subsequently may one ask whether the signs can be given a sense compatible with the rules previously laid down. Such matters, however, lie entirely outside formal arithmetic and only arise when applications are to be made. Then, however, they must be considered; for an arithmetic with no thought as its content will also be without possibility of application. Why can no application be made of a configuration of chess pieces? Obviously, because it expresses no thought. If it did so and every chess move conforming to the rules corresponded to a transition from one thought to another, applications of chess would also be conceivable. Why can arithmetical equations be applied? Only because they express thoughts. How could we possibly apply an equation which expressed nothing and was nothing more than a group of figures, to be transformed into another group of figures in accordance with certain rules? Now, it is applicability alone which elevates arithmetic from a game to the rank of a science. So applicability necessarily belongs to it. Is it good, then, to exclude from arithmetic what it needs in order to be a science?"  (Gottlob Frege, "Grundgesetze der Arithmetik" ["Basic Laws of Arithmetic"], 1893)

"[…] theory of numbers lies remote from those who are indifferent; they show little interest in its development, indeed they positively avoid it. [..] the pure theory of numbers is an extremely abstract thing, and one does not often find the gift of ability to understand with pleasure anything so abstract. […] I believe that the theory of numbers would be made more accessible, and would awaken more general interest, if it mere presented in connection with graphical elements and appropriate figures.”  (Felix Klein, “Elementary Mathematics from an Advanced Standpoint”, 1908)

"A mathematician is not a man who can readily manipulate figures; often he cannot. He is not even a man who can readily perform the transformations of equations by the use of calculus. He is primarily an individual who is skilled in the use of symbolic logic on a high plane, and especially he is a man of intuitive judgment in the choice of the manipulative processes he employs." (Vannevar Bush, "As We May Think", 1945)

"What in fact is the schema of the object? In one essential respect it is a schema belonging to intelligence. To have the concept of an object is to attribute the perceived figure to a substantial basis, so that the figure and the substance that it thus indicates continue to exist outside the perceptual field. The permanence of the object seen from this viewpoint is not only a product of intelligence, but constitutes the very first of those fundamental ideas of conservation which we shall see developing within the thought process." (Jean Piaget, "The Psychology of Intelligence", 1950)

"[Arithmetic] is another of the great master-keys of life. With it the astronomer opens the depths of the heavens; the engineer, the gates of the mountains; the navigator, the pathways of the deep. The skillful arrangement, the rapid handling of figures, is a perfect magician's wand." (Edward Everett)

On Graphics II: Statistics

"If statistical graphics, although born just yesterday, extends its reach every day, it is because it replaces long tables of numbers and it allows one not only to embrace at glance the series of phenomena, but also to signal the correspondences or anomalies, to find the causes, to identify the laws." (Émile Cheysson, cca. 1877)

"The graphical method has considerable superiority for the exposition of statistical facts over the tabular. A heavy bank of figures is grievously wearisome to the eye, and the popular mind is as incapable of drawing any useful lessons from it as of extracting sunbeams from cucumbers." (Arthur B Farquhar & Henry Farquhar, "Economic and Industrial Delusions", 1891)

"Figures alone prove or disprove nothing. Only the conclusions drawn from the collected material can do this. And these are theoretical."  (Ludwig von Mises, "Socialism: An Economic and Sociological Analysis", 1922)

"[…] the methods of statistics are so variable and uncertain, so apt to be influenced by circumstances, that it is never possible to be sure that one is operating with figures of equal weight." (Havelock Ellis, "The Dance of Life", 1923)

"Factual science may collect statistics, and make charts. But its predictions are, as has been well said, but past history reversed." (John Dewey, "Art as Experience", 1934)

"Although, the tabular arrangement is the fundamental form for presenting a statistical series, a graphic representation - in a chart or diagram - is often of great aid in the study and reporting of statistical facts. Moreover, sometimes statistical data must be taken, in their sources, from graphic rather than tabular records." (William L Crum et al, "Introduction to Economic Statistics", 1938)

"One of the greatest values of the graphic chart is its use in the analysis of a problem. Ordinarily, the chart brings up many questions which require careful consideration and further research before a satisfactory conclusion can be reached. A properly drawn chart gives a cross-section picture of the situation. While charts may bring out. hidden facts in tables or masses of data, they cannot take the place of careful, analysis. In fact, charts may be dangerous devices when in the hands of those unwilling to base their interpretations upon careful study. This, however, does not detract from their value when they are properly used as aids in solving statistical problems." (John R Riggleman & Ira N Frisbee, "Business Statistics", 1938)

"The technical analysis of any large collection of data is a task for a highly trained and expensive man who knows the mathematical theory of statistics inside and out. Otherwise the outcome is likely to be a collection of drawings - quartered pies, cute little battleships, and tapering rows of sturdy soldiers in diversified uniforms - interesting enough in the colored Sunday supplement, but hardly the sort of thing from which to draw reliable inferences." (Eric T Bell, "Mathematics: Queen and Servant of Science", 1951)

"The primary purpose of a graph is to show diagrammatically how the values of one of two linked variables change with those of the other. One of the most useful applications of the graph occurs in connection with the representation of statistical data." (John F Kenney & E S Keeping, "Mathematics of Statistics" Vol. I 3rd Ed., 1954)

"Every economic and social situation or problem is now described in statistical terms, and we feel that it is such statistics which give us the real basis of fact for understanding and analysing problems and difficulties, and for suggesting remedies. In the main we use such statistics or figures without any elaborate theoretical analysis; little beyond totals, simple averages and perhaps index numbers. Figures have become the language in which we describe our economy or particular parts of it, and the language in which we argue about policy." (Ely Devons, "Essays in Economics", 1961)

"Indeed the language of statistics is rarely as objective as we imagine. The way statistics are presented, their arrangement in a particular way in tables, the juxtaposition of sets of figures, in itself reflects the judgment of the author about what is significant and what is trivial in the situation which the statistics portray." (Ely Devons, "Essays in Economics", 1961)

"Pencil and paper for construction of distributions, scatter diagrams, and run-charts to compare small groups and to detect trends are more efficient methods of estimation than statistical inference that depends on variances and standard errors, as the simple techniques preserve the information in the original data." (W Edwards Deming, "On Probability as Basis for Action", American Statistician Vol. 29 (4), 1975)

"Remember, the primary function of a graph of any kind is to illustrate the relationship between two variables. [...] To draw any graph we must have established some relationship between the two variables. This relationship can be in the form of a formula (equation is the more mathematical term), as we have just seen, or simply a set of observations, as is common in all types of statistical work. Sometimes we develop set of observations and then try to find an equation that expresses, in mathematical language, the relationship between the two variables." (Peter H Selby, "Interpreting Graphs and Tables", 1976)

"Although advice on how and when to draw graphs is available, we have no theory of statistical graphics […]" (Stephen Fienberg, "The American Statistician", Graphical Methods in Statistics Vol. 13 (4), 1979)

"Excellence in statistical graphics consists of complex ideas communicated
with clarity, precision, and efficiency. Graphical displays should
- show the data
- induce the viewer to think about the substance rather than about the
methodology, graphic design, the technology of graphic production,
or something else
- avoid distorting what the data have to say
- present many numbers in a small space
- make large data sets coherent
- encourage the eye to compare different pieces of data
- reveal the data at several levels of detail, from a broad overview to the
- serve a reasonable clear purpose: description, exploration, tabulation,
- be closely integrated." (Edward R Tufte, "The Visual Display of Quantitative Information", 1983)

"Inept graphics also flourish because many graphic artists believe that statistics are boring and tedious. It then follows that decorated graphics must pep up, animate, and all too often exaggerate what evidence there is in the data. […] If the statistics are boring, then you've got the wrong numbers." (Edward R Tufte, "The Visual Display of Quantitative Information", 1983)

"Of course statistical graphics, just like statistical calculations, are only as good as what goes into them. An ill-specified or preposterous model or a puny data set cannot be rescued by a graphic (or by calculation), no matter how clever or fancy. A silly theory means a silly graphic." (Edward R Tufte, "The Visual Display of Quantitative Information", 1983)

"The content and context of the numerical data determines the most appropriate mode of presentation. A few numbers can be listed, many numbers require a table. Relationships among numbers can be displayed by statistics. However, statistics, of necessity, are summary quantities so they cannot fully display the relationships, so a graph can be used to demonstrate them visually. The attractiveness of the form of the presentation is determined by word layout, data structure, and design." (Gerald van Belle, "Statistical Rules of Thumb", 2002)

02 September 2023

Geometrical Figures XVIII: Cubes

"The mathematician of to-day admits that he can neither square the circle, duplicate the cube or trisect the angle. May not our mechanicians, in like manner, be ultimately forced to admit that aerial flight is one of that great class of problems with which men can never cope. [...] I do not claim that this is a necessary conclusion from any past experience. But I do think that success must await progress of a different kind from that of invention." (Simon Newcomb, "Side-lights on Astronomy and Kindred Fields of Popular Science", 1906)

"Architecture is the masterly, correct and magnificent play of masses brought together in light. Our eyes are made to see forms in light; light and shade reveal these forms; cubes, cones, spheres, cylinders or pyramids are the great primary forms which light reveals to advantage; the image of these is distinct and tangible within us without ambiguity. It is for this reason that these are beautiful forms, the most beautiful forms. Everybody is agreed to that, the child, the savage and the metaphysician." (Charles-Edouard Jeanneret [Le Corbusier], "Towards a New Architecture", 1923)

"Geometry is the study of form and shape. Our first encounter with it usually involves such figures as triangles, squares, and circles, or solids such as the cube, the cylinder, and the sphere. These objects all have finite dimensions of length, area, and volume - as do most of the objects around us. At first thought, then, the notion of infinity seems quite removed from ordinary geometry. That this is not so can already be seen from the simplest of all geometric figures - the straight line. A line stretches to infinity in both directions, and we may think of it as a means to go 'far out' in a one-dimensional world." (Eli Maor, "To Infinity and Beyond: A Cultural History of the Infinite", 1987)

"Bivalence trades accuracy for simplicity. Binary outcomes of yes and no, white and black, true and false simplify math and computer processing. You can work with strings of 0s and 1s more easily than you can work with fractions. But bivalence requires some force fitting and rounding off [...] Bivalence holds at cube corners. Multivalence holds everywhere else." (Bart Kosko, "Fuzzy Thinking: The new science of fuzzy logic", 1993)

"Fuzzy entropy measures the fuzziness of a fuzzy set. It answers the question 'How fuzzy is a fuzzy set?' And it is a matter of degree. Some fuzzy sets are fuzzier than others. Entropy means the uncertainty or disorder in a system. A set describes a system or collection of things. When the set is fuzzy, when elements belong to it to some degree, the set is uncertain or vague to some degree. Fuzzy entropy measures this degree. And it is simple enough that you can see it in a picture of a cube." (Bart Kosko, "Fuzzy Thinking: The new science of fuzzy logic", 1993)

"Topology is a geometry in which all lengths, angles, and areas can be distorted at will. Thus a triangle can be continuously transformed into a rectangle, the rectangle into a square, the square into a circle, and so on. Similarly, a cube can be transformed into a cylinder, the cylinder into a cone, the cone into a sphere. Because of these continuous transformations, topology is known popularly as 'rubber sheet geometry'. All figures that can be transformed into each other by continuous bending, stretching, and twisting are called 'topologically equivalent'." (Fritjof Capra, "The Systems View of Life: A Unifying Vision", 2014)

"Ontological mathematics is operating in such a way as to organize itself into a zero-entropy structure – mathematical perfection. The 'Big Bang' is equivalent to the total scrambling of a cosmic Rubik’s Cube. The task of ontological mathematics is then to unscramble the Cube and return it to its original, pristine configuration. Emotionally, this amounts to returning to perfect Love and Bliss. Intellectually, it means reaching a state of perfect logic and reason [...] thinking perfectly." (Thomas Stark, "God Is Mathematics: The Proofs of the Eternal Existence of Mathematics", 2018)

"This method of subjecting the infinite to algebraic manipulations is called differential and integral calculus. It is the art of numbering and measuring with precision things the existence of which we cannot even conceive. Indeed, would you not think that you are being laughed at, when told that there are lines infinitely great which form infinitely small angles? Or that a line which is straight so long as it is finite would, by changing its direction infinitely little, become an infinite curve? Or that there are infinite squares, infinite cubes, and infinities of infinities, one greater than another, and that, as compared with the ultimate infinitude, those which precede it are as nought. All these things at first appear as excess of frenzy; yet, they bespeak the great scope and subtlety of the human spirit, for they have led to the discovery of truths hitherto undreamt of." (Voltaire)

12 February 2023

Geometrical Figures XIV: Torus

"But it is a third geometry from which quantity is completely excluded and which is purely qualitative; this is analysis situs. In this discipline, two figures are equivalent whenever one can pass from one to the other by a continuous deformation; whatever else the law of this deformation may be, it must be continuous. Thus, a circle is equivalent to an ellipse or even to an arbitrary closed curve, but it is not equivalent to a straight-line segment since this segment is not closed. A sphere is equivalent to any convex surface; it is not equivalent to a torus since there is a hole in a torus and in a sphere there is not. Imagine an arbitrary design and a copy of this same design executed by an unskilled draftsman; the properties are altered, the straight lines drawn by an inexperienced hand have suffered unfortunate deviations and contain awkward bends. From the point of view of metric geometry, and even of projective geometry, the two figures are not equivalent; on the contrary, from the point of view of analysis situs, they are." (Henri Poincaré, "Dernières pensées", 1913)

"The relation of betweenness on the torus is undetermined for curves that cannot be contracted to a point [e. g., circles around a doughnut hole], i. e., for three of such curves it is not uniquely determined which of them lies between the other two [...] This indeterminateness [...] has the consequence that such a curve [alone] does not divide the surface of the torus into two separate domains; between points to the 'right' and to the 'left' of the line." (Hans Reichenbach, "The Philosophy of Space and Time", 1928) 

"Regarding stability, the state trajectories of a system tend to equilibrium. In the simplest case they converge to one point (or different points from different initial states), more commonly to one (or several, according to initial state) fixed point or limit cycle(s) or even torus(es) of characteristic equilibrial behaviour. All this is, in a rigorous sense, contingent upon describing a potential, as a special summation of the multitude of forces acting upon the state in question, and finding the fixed points, cycles, etc., to be minima of the potential function. It is often more convenient to use the equivalent jargon of 'attractors' so that the state of a system is 'attracted' to an equilibrial behaviour. In any case, once in equilibrial conditions, the system returns to its limit, equilibrial behaviour after small, arbitrary, and random perturbations." (Gordon Pask, "Different Kinds of Cybernetics", 1992)

"Since the ellipse is a closed curve it has a total length, λ say, and therefore f(l + λ) = f(l). The elliptic function f is periodic, with 'period' λ, just as the sine function is periodic with period 2π. However, as Gauss discovered in 1797, elliptic functions are even more interesting than this: they have a second, complex period. This discovery completely changed the face of calculus, by showing that some functions should be viewed as functions on the plane of complex numbers. And just as periodic functions on the line can be regarded as functions on a periodic line - that is, on the circle - elliptic functions can be regarded as functions on a doubly periodic plane - that is, on a 2-torus." (John Stillwell, "Yearning for the impossible: the surpnsing truths of mathematics", 2006) 

"[…] topology is concerned precisely with those properties of geometric figures that do not change when the figures are transformed. Intersections of lines, for example, remain intersections, and the hole in a torus (doughnut) cannot be transformed away. Thus a doughnut may be transformed topologically into a coffee cup (the hole turning into a handle) but never into a pancake. Topology, then, is really a mathematics of relationships, of unchangeable, or 'invariant', patterns." (Fritjof Capra, "The Systems View of Life: A Unifying Vision", 2014)

Geometrical Figures XIII: Cones

"The circle in the moon which divides the dark and the bright portions is least when the cone comprehending both the sun and the moon has its vertex at our eye." (Aristarchus of Samos, "On the Sizes and Distances of the Sun and the Moon", cca. 250 BC)

"Two equal spheres are comprehended by one and the same cylinder, and two unequal spheres by one and the same cone which has its vertex in the direction of the lesser sphere; and the straight line drawn through the centres of the spheres is at right angles to each of the circles in which the surface of the cylinder, or of the cone, touches the spheres." (Aristarchus of Samos, "On the Sizes and Distances of the Sun and the Moon", cca. 250 BC)

"Architecture is the masterly, correct and magnificent play of masses brought together in light. Our eyes are made to see forms in light; light and shade reveal these forms; cubes, cones, spheres, cylinders or pyramids are the great primary forms which light reveals to advantage; the image of these is distinct and tangible within us without ambiguity. It is for this reason that these are beautiful forms, the most beautiful forms. Everybody is agreed to that, the child, the savage and the metaphysician." (Charles-Edouard Jeanneret [Le Corbusier], "Towards a New Architecture", 1923)

"Two kinds of sets turn up in geometry. First of all, in geometry we ordinarily talk about the properties of some set of geometric figures. For example, the theorem stating that the diagonals of a parallelogram bisect each other relates to the set of all parallelograms. Secondly, the geometric figures are themselves sets composed of the points occurring within them. We can therefore speak of the set of all points contained within a given circle, of the set of all points within a given cone, etc." (Naum Ya. Vilenkin, "Stories about Sets", 1968)

"What is the shape of space? Is it flat, or is it bent? Is it nicely laid out, or is it warped and shrunken? Is it finite, or is it infinite? Which of the following does space resemble more: (a) a sheet of paper, (b) an endless desert, (c) a soap bubble, (d) a doughnut, (e) an Escher drawing, (f) an ice cream cone, (g) the branches of a tree, or (h) a human body?" (Rudy Rucker, "The Fourth Dimension: Toward a Geometry of Higher Reality", 1984)

"Why is geometry often described as cold and dry? One reason lies in its inability to describe the shape of a cloud, a mountain, a coastline, or a tree. Clouds are not spheres, mountains are not cones, coastlines are not circles, and bark is not smooth, nor does lightning travel in straight line. [...] Nature exhibits not simply a higher degree but an altogether different level of complexity." (Benoît Mandelbrot, 1984)

"To a mathematician, an object possesses symmetry if it retains its form after some transformation. A circle, for example, looks the same after any rotation; so a mathematician says that a circle is symmetric, even though a circle is not really a pattern in the conventional sense - something made up from separate, identical bits. Indeed the mathematician generalizes, saying that any object that retains its form when rotated - such as a cylinder, a cone, or a pot thrown on a potter's wheel - has circular symmetry." (Ian Stewart & Martin Golubitsky,"Fearful Symmetry: Is God a Geometer?", 1992)

"Topology is a geometry in which all lengths, angles, and areas can be distorted at will. Thus a triangle can be continuously transformed into a rectangle, the rectangle into a square, the square into a circle, and so on. Similarly, a cube can be transformed into a cylinder, the cylinder into a cone, the cone into a sphere. Because of these continuous transformations, topology is known popularly as 'rubber sheet geometry'. All figures that can be transformed into each other by continuous bending, stretching, and twisting are called 'topologically equivalent'." (Fritjof Capra, "The Systems View of Life: A Unifying Vision", 2014)

18 April 2022

Figurative Figures III: Curves

“Truth is on a curve whose asymptote our spirit follows eternally." (Léo Errera,"Recueil d'Œuvres de Léo Errera: Botanique Générale", 1908)

"Human knowledge is not (or does not follow) a straight line, but a curve, which endlessly approximates a series of circles, a spiral. Any fragment, segment, section of this curve can be transformed (transformed one-sidedly) into an independent, complete, straight line [...]" (Vladimir I Lenin, "On the Question of Dialectics", 1915)

No revolution, no heresy is comfortable or easy. For it is a leap, it is a break in the smooth evolutionary curve, and a break is a wound, a pain. But the wound is necessary; most of mankind suffers from hereditary sleeping sickness, and victims of this sickness (entropy) must not be allowed to sleep, or it will be their final sleep, death. (Yevgeny Zamiatin, "On Literature, Revolution, Entropy, and Other Matters", 1923)

"Is evolution a theory, a system or a hypothesis? It is much more: it is a general condition to which all theories, all hypotheses, all systems must bow and which they must satisfy henceforth if they are to be thinkable and true. Evolution is a light illuminating all facts, a curve that all lines must follow." (Pierre T de Chardin, "The Phenomenon of Man", 1955)

The problems are the ones that we have always known. The little gods are still with us, under different names. There is conformity: of technique, leading to repetition; of language, encouraging if not imposing conformity of thought. There is popularity: it is so easy to ride along on an already surging tide; to plant more seed in an already well-ploughed field; so hard to drive a new furrow into stony ground. There is laxness: the disregard of small errors, of deviations, of the unexpected response; the easy worship of the smooth curve. There is also fear: the fear of speculation; the overprotective fear of being wrong. We are forgetful of the curious and wayward dialectic of science, whereby a well-constructed theory even if it is wrong, can bring a signal advance. (Dickinson W Richards, Transactions of the Association of American Physicians Vol. 75, 1962)

"Mathematics is more than doing calculations, more than solving equations, more than proving theorems, more than doing algebra, geometry or calculus, more than a way of thinking. Mathematics is the design of a snowflake, the curve of a palm frond, the shape of a building, the joy of a game, the frustration of a puzzle, the crest of a wave, the spiral of a spider's web. It is ancient and yet new. Mathematics is linked to so many ideas and aspects of the universe." (Theoni Pappas, "More Joy of Mathematics: Exploring Mathematics All Around You", 1986)

"The metaphor never goes very far, anymore than a curve can long be confused with its tangent." (Henri Bergson,"A World of Ideas", 1989)

"History too has an inertia. In the four dimensions of spacetime, particles (or events) have directionality; mathematicians, trying to show this, draw what they call 'world lines' on graphs. In human affairs, individual world lines form a thick tangle, curling out of the darkness of prehistory and stretching through time: a cable the size of Earth itself, spiraling round the sun on a long curved course. That cable of tangled world lines is history. Seeing where it has been, it is clear where it is going - it is a matter of simple extrapolation." (Kim S Robinson, "Red Mars", 1992)

17 April 2022

Geometrical Figures X: Curves

"Even though these are called imaginary, they continue to be useful and even necessary in expressing real magnitudes analytically. For example, it is impossible to express the analytic value of a straight line necessary to trisect a given angle without the aid of imaginaries. Just so it is impossible to establish our calculus of transcendent curves without using differences which are on the point of vanishing, and at last taking the incomparably small in place of the quantity to which we can assign smaller values to infinity." (Gottfried W Leibniz, [letter to Varignon], 1702)

"It is held because of this law in particular, that no change may occur suddenly, but rather that every change always passes by infinitely small stages, of which the trajectory of a point in a curved line provides a first example." (Abraham G Kästner, "Anfangsgründe der Analysis des Unendlichen" ["Beginnings of the Analysis of the Infinite"], 1766)

"In order to know the curvature of a curve, the determination of the radius of the osculating circle furnishes us the best measure, where for each point of the curve we find a circle whose curvature is precisely the same. However, when one looks for the curvature of a surface, the question is very equivocal and not at all susceptible to an absolute response, as in the case above. There are only spherical surfaces where one would be able to measure the curvature, assuming the curvature of the sphere is the curvature of its great circles, and whose radius could be considered the appropriate measure. But for other surfaces one doesn’t know even how to compare a surface with a sphere, as when one can always compare the curvature of a curve with that of a circle. The reason is evident, since at each point of a surface there are an infinite number of different curvatures. One has to only consider a cylinder, where along the directions parallel to the axis, there is no curvature, whereas in the directions perpendicular to the axis, which are circles, the curvatures are all the same, and all other oblique sections to the axis give a particular curvature. It’s the same for all other surfaces, where it can happen that in one direction the curvature is convex, and in another it is concave, as in those resembling a saddle." (Leonhard Euler, "Recherches sur la courbure des surfaces", 1767)

"The ordinary operations of algebra suffice to resolve problems in the theory of curves." (Joseph-Louis de Lagrange, "Théorie des fonctions analytiques", 1797)

"The analytical equations, unknown to the ancient geometers, which Descartes was the first to introduce into the study of curves and surfaces, are not restricted to the properties of figures, and to those properties which are the object of rational mechanics; they extend to all general phenomena. There cannot be a language more universal and more simple, more free from errors and from obscurities, that is to say more worthy to express the invariable relations of natural things." (Jean-Baptiste-Joseph Fourier, "The Analytical Theory of Heat", 1822)

"Even if a curve is not drawn nor it is assumed to be tracked by the eye, but we have a 'perception' of it, it has in any case a limited precision and does not therefore correspond to the exact concept of a function of precision mathematics but rather to the idea of a function stripe." (Felix Klein, 1873)

"When we consider complex numbers and their geometrical representation, we leave the field of the original concept of quantity, as contained especially in the quantities of Euclidean geometry: its lines, surfaces and volumes. According to the old conception, length appears as something material which fills the straight line between its end points and at the same time prevents another thing from penetrating into its space by its rigidity. In adding quantities, we are therefore forced to place one quantity against another. Something similar holds for surfaces and solid contents. The introduction of negative quantities made a dent in this conception, and imaginary quantities made it completely impossible. Now all that matters is the point of origin and the end point; whether there is a continuous line between them, and if so which, appears to make no difference whatsoever; the idea of filling space has been completely lost. All that has remained is certain general properties of addition, which now emerge as the essential characteristic marks of quantity. The concept has thus gradually freed itself from intuition and made itself independent. This is quite unobjectionable, especially since its earlier intuitive character was at bottom mere appearance. Bounded straight lines and planes enclosed by curves can certainly be intuited, but what is quantitative about them, what is common to lengths and surfaces, escapes our intuition." (Gottlob Frege, "Methods of Calculation based on an Extension of the Concept of Quantity", 1874)

"Instead of the points of a line, plane, space, or any manifold under investigation, we may use instead any figure contained within the manifold: a group of points, curve, surface, etc. As there is nothing at all determined at the outset about the number of arbitrary parameters upon which these figures should depend, the number of dimensions of the line, plane, space, etc. is likewise arbitrary and depends only on the choice of space element. But so long as we base our geometrical investigation on the same group of transformations, the geometrical content remains unchanged. That is, every theorem resulting from one choice of space element will also be a theorem under any other choice; only the arrangement and correlation of the theorems will be changed. The essential thing is thus the group of transformations; the number of dimensions to be assigned to a manifold is only of secondary importance." (Felix Klein, "A comparative review of recent researches in geometry", Bulletin of the American Mathematoical Society 2(10), 1893)

"By [diagrams] it is possible to present at a glance all the facts which could be obtained from figures as to the increase, fluctuations, and relative importance of prices, quantities, and values of different classes of goods and trade with various countries; while the sharp irregularities of the curves give emphasis to the disturbing causes which produce any striking change. (Arthur L Bowley, "A Short Account of England's Foreign Trade in the Nineteenth Century, its Economic and Social Results", 1905)

"Mathematicians, however, are well aware that it is childish to try to show by drawing curves that every continuous function has a derivative. Though differentiable functions are the simplest and the easiest to deal with, they are exceptional. Using geometrical language, curves that have no tangents are the rule, and regular curves, such as the circle, are interesting but quite special." (Jean-Baptiste Perrin, 1906)

"Everyone knows what a curve is, until he has studied enough mathematics to become confused through the countless number of possible exceptions. […] A curve is the totality of points, whose coordinates are functions of a parameter which may be differentiated as often as may be required." (Felix Klein, "Elementar Mathematik vom hoheren Standpunkte aus" Vol. 2, 1909)

"But it is a third geometry from which quantity is completely excluded and which is purely qualitative; this is analysis situs. In this discipline, two figures are equivalent whenever one can pass from one to the other by a continuous deformation; whatever else the law of this deformation may be, it must be continuous. Thus, a circle is equivalent to an ellipse or even to an arbitrary closed curve, but it is not equivalent to a straight-line segment since this segment is not closed. A sphere is equivalent to any convex surface; it is not equivalent to a torus since there is a hole in a torus and in a sphere there is not. Imagine an arbitrary design and a copy of this same design executed by an unskilled draftsman; the properties are altered, the straight lines drawn by an inexperienced hand have suffered unfortunate deviations and contain awkward bends. From the point of view of metric geometry, and even of projective geometry, the two figures are not equivalent; on the contrary, from the point of view of analysis situs, they are." (Henri Poincaré, "Dernières pensées", 1913)

"The number was first studied in respect of its rationality or irrationality, and it was shown to be really irrational. When the discovery was made of the fundamental distinction between algebraic and transcendental numbers, i. e. between those numbers which can be, and those numbers which cannot be, roots of an algebraical equation with rational coefficients, the question arose to which of these categories the number π belongs. It was finally established by a method which involved the use of some of the most modern of analytical investigation that the number π was transcendental. When this result was combined with the results of a critical investigation of the possibilities of a Euclidean determination, the inferences could be made that the number π, being transcendental, does not admit of a construction either by a Euclidean determination, or even by a determination in which the use of other algebraic curves besides the straight line and the circle are permitted." (Ernest W Hobson, "Squaring the Circle", 1913) 

"In order to regain in a rigorously defined function those properties that are analogous to those ascribed to an empirical curve with respect to slope and curvature (first and higher difference quotients), we need not only to require that the function is continuous and has a finite number of maxima and minima in a finite interval, but also assume explicitly that it has the first and a series of higher derivatives (as many as one will want to use)." (Felix Klein, "Elementary Mathematics from a Higher Standpoint" Vol III: "Precision Mathematics and Approximation Mathematics", 1928)

"It is possible to pass continuously from any non-singular curve to any other such curve by interposition of other curves in such a way that during this procedure one will meet no other occurrence of singularities, apart from a finite number of times a curve with an ordinary double point, no matter whether the curve has at that point real or imaginary branches." (Felix Klein, "Elementary Mathematics from a Higher Standpoint" Vol III: "Precision Mathematics and Approximation Mathematics", 1928)

"The curves treated by the calculus are normal and healthy; they possess no idiosyncrasies. But mathematicians would not be happy merely with simple, lusty configurations. Beyond these their curiosity extends to psychopathic patients, each of whom has an individual case history resembling no other; these are the pathological curves in mathematics." (Edward Kasner & James R Newman, "Mathematics and the Imagination", 1940)

"The concept of an average, the equation to a curve, the description of a froth or cellular tissue, all come within the scope of mathematics for no other reason than that they are summations of more elementary principles or phenomena. Growth and Form are throughout of this composite nature; therefore the laws of mathematics are bound to underlie them, and her methods to be peculiarly fitted to interpret them." (D'Arcy W Thompson, "On Growth and Form", 1951)

"In the mathematical theory of the maximum and minimum problems in calculus of variations, different methods are employed. The old classical method consists in finding criteria -as to whether or not for a given curve the corresponding number assumes a maximum or minimum. In order to find such criteria a considered curve is a little varied, and it is from this method that the name 'calculus of variations' for the whole branch of mathematics is derived." (Karl Menger, "What Is Calculus of Variations and What Are Its Applications?" [James R Newman, "The World of Mathematics" Vol. II], 1956)

"A primary goal of any learning model is to predict correctly the learning curve - proportions of correct responses versus trials. Almost any sensible model with two or three free parameters, however, can closely fit the curve, and so other criteria must be invoked when one is comparing several models." (Robert R Bush & Frederick Mosteller, "A Comparison of Eight Models?", Studies in Mathematical Learning Theory, 1959)

"Mathematical statistics provides an exceptionally clear example of the relationship between mathematics and the external world. The external world provides the experimentally measured distribution curve; mathematics provides the equation (the mathematical model) that corresponds to the empirical curve. The statistician may be guided by a thought experiment in finding the corresponding equation. (Marshall J Walker, "The Nature of Scientific Thought", 1963)

"A manifold, roughly, is a topological space in which some neighborhood of each point admits a coordinate system, consisting of real coordinate functions on the points of the neighborhood, which determine the position of points and the topology of that neighborhood; that is, the space is locally cartesian. Moreover, the passage from one coordinate system to another is smooth in the overlapping region, so that the meaning of 'differentiable' curve, function, or map is consistent when referred to either system." (Richard L Bishop & Samuel I Goldberg, "Tensor Analysis on Manifolds", 1968)

"The mathematical models for many physical systems have manifolds as the basic objects of study, upon which further structure may be defined to obtain whatever system is in question. The concept generalizes and includes the special cases of the cartesian line, plane, space, and the surfaces which are studied in advanced calculus. The theory of these spaces which generalizes to manifolds includes the ideas of differentiable functions, smooth curves, tangent vectors, and vector fields. However, the notions of distance between points and straight lines (or shortest paths) are not part of the idea of a manifold but arise as consequences of additional structure, which may or may not be assumed and in any case is not unique." (Richard L Bishop & Samuel I Goldberg, "Tensor Analysis on Manifolds", 1968)

"Because of its foundation in topology, catastrophe theory is qualitative, not quantitative. Just as geometry treated the properties of a triangle without regard to its size, so topology deals with properties that have no magnitude, for example, the property of a given point being inside or outside a closed curve or surface. This property is what topologists call 'invariant' -it does not change even when the curve is distorted. A topologist may work with seven-dimensional space, but he does not and cannot measure (in the ordinary sense) along any of those dimensions. The ability to classify and manipulate all types of form is achieved only by giving up concepts such as size, distance, and rate. So while catastrophe theory is well suited to describe and even to predict the shape of processes, its descriptions and predictions are not quantitative like those of theories built upon calculus. Instead, they are rather like maps without a scale: they tell us that there are mountains to the left, a river to the right, and a cliff somewhere ahead, but not how far away each is, or how large." (Alexander Woodcock & Monte Davis, "Catastrophe Theory", 1978)

"Geometry is the study of shapes. Although true, this definition is so broad that it is almost meaningless. The judge of a beauty contest is, in a sense, a geometrician because he is judging […] shapes, but this is not quite what we want the word to mean. It has been said that a curved line is the most beautiful distance between two points. Even though this statement is about curves, a proper element of geometry, the assertion seems more to be in the domain of aesthetics rather than mathematics." (Martin Gardner, "Aha! Insight", 1978)

"First, strange attractors look strange: they are not smooth curves or surfaces but have 'non-integer dimension' - or, as Benoit Mandelbrot puts it, they are fractal objects. Next, and more importantly, the motion on a strange attractor has sensitive dependence on initial condition. Finally, while strange attractors have only finite dimension, the time-frequency analysis reveals a continuum of frequencies." (David Ruelle, "Chance and Chaos", 1991)

"An attractor that consists of an infinite number of curves, surfaces, or higher-dimensional manifolds - generalizations of surfaces to multidimensional space - often occurring in parallel sets, with a gap between any two members of the set, is called a strange attractor." (Edward N Lorenz, "The Essence of Chaos", 1993)

"Topology deals with those properties of curves, surfaces, and more general aggregates of points that are not changed by continuous stretching, squeezing, or bending. To a topologist, a circle and a square are the same, because either one can easily be bent into the shape of the other. In three dimensions, a circle and a closed curve with an overhand knot in it are topologically different, because no amount of bending, squeezing, or stretching will remove the knot." (Edward N Lorenz, "The Essence of Chaos", 1993)

"Since geometry is the mathematical idealization of space, a natural way to organize its study is by dimension. First we have points, objects of dimension O. Then come lines and curves, which are one-dimensional objects, followed by two-dimensional surfaces, and so on. A collection of such objects from a given dimension forms what mathematicians call a 'space'. And if there is some notion enabling us to say when two objects are 'nearby' in such a space, then it's called a topological space." (John L Casti, "Five Golden Rules", 1995)

"Nature normally hates power laws. In ordinary systems all quantities follow bell curves, and correlations decay rapidly, obeying exponential laws. But all that changes if the system is forced to undergo a phase transition. Then power laws emerge-nature's unmistakable sign that chaos is departing in favor of order. The theory of phase transitions told us loud and clear that the road from disorder to order is maintained by the powerful forces of self-organization and is paved by power laws. It told us that power laws are not just another way of characterizing a system's behavior. They are the patent signatures of self-organization in complex systems." (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)

"If the intensity of the material world is plotted along the horizontal axis, and the response of the human mind is on the vertical, the relation between the two is represented by the logarithmic curve. Could this rule provide a clue to the relationship between the objective measure of information, and our subjective perception of it?" (Hans Christian von Baeyer, "Information, The New Language of Science", 2003)

"There is weirdness in non-Euclidean geometry, but not because of anything that geometers might say about the ordinary fond familiar world in which space is flat, angles sharp, and only curves are curved. Non-Euclidean geometry is an instrument in the enlargement of the mathematician’s self-consciousness, and so comprises an episode in a long, difficult, and extended exercise in which the human mind attempts to catch sight of itself catching sight of itself, and so without end." (David Berlinski, "Infinite Ascent: A short history of mathematics", 2005)

"Wherever we look in our world the complex systems of nature and time seem to preserve the look of details at finer and finer scales. Fractals show a holistic hidden order behind things, a harmony in which everything affects everything else, and, above all, an endless variety of interwoven patterns. Fractal geometry allows bounded curves of infinite length, as well as closed surfaces with infinite area. It even allows curves with positive volume and arbitrarily large groups of shapes with exactly the same boundary." (Philip Tetlow, "The Web’s Awake: An Introduction to the Field of Web Science and the Concept of Web Life", 2007)

"Bifurcation theory is the mathematical study of changes in the qualitative or topological structure of a given family, such as the integral curves of a family of vector fields, and the solutions of a family of differential equations. Most commonly applied to the mathematical study of dynamical systems, a bifurcation occurs when a small smooth change made to the parameter values (the bifurcation parameters) of a system causes a sudden 'qualitative' or topological change in its behavior. Bifurcations can occur in both continuous systems (described by ODEs, DDEs, or PDEs) and discrete systems (described by maps)." (Tianshou Zhou, "Bifurcation", 2013)

"With time series though, there is absolutely no substitute for plotting. The pertinent pattern might end up being a sharp spike followed by a gentle taper down. Or, maybe there are weird plateaus. There could be noisy spikes that have to be filtered out. A good way to look at it is this: means and standard deviations are based on the naïve assumption that data follows pretty bell curves, but there is no corresponding 'default' assumption for time series data (at least, not one that works well with any frequency), so you always have to look at the data to get a sense of what’s normal. [...] Along the lines of figuring out what patterns to expect, when you are exploring time series data, it is immensely useful to be able to zoom in and out." (Field Cady, "The Data Science Handbook", 2017)

"[…] when a curve does look increasingly straight when we zoom in on it sufficiently at any point, that curve is said to be smooth. […] In modern calculus, however, we have learned how to cope with curves that are not smooth. The inconveniences and pathologies of non-smooth curves sometimes arise in applications due to sudden jumps or other discontinuities in the behavior of a physical system." (Steven H Strogatz, "Infinite Powers: The Story of Calculus - The Most Important Discovery in Mathematics", 2019)

"With its yin and yang binaries, pi is like all of calculus in miniature. Pi is a portal between the round and the straight, a single number yet infinitely complex, a balance of order and chaos. Calculus, for its part, uses the infinite to study the finite, the unlimited to study the limited, and the straight to study the curved. The Infinity Principle is the key to unlocking the mystery of curves, and it arose here first, in the mystery of pi." (Steven H Strogatz, "Infinite Powers: The Story of Calculus - The Most Important Discovery in Mathematics", 2019)

09 April 2022

Figurative Figures II: Surfaces

"If 'bounded by a surface' is the definition of body there cannot be an infinite body either intelligible or sensible." ((Aristotle, "De Caelo" ["On the Heavens"], cca. 350 BC)

"When what surrounds, then, is not separate from the thing, but is in continuity with it, the thing is said to be in what surrounds it, not in the sense of in place, but as a part in a whole. But when the thing is separate or in contact, it is immediately ‘in’ the inner surface of the surrounding body, and this surface is neither a part of what is in it nor yet greater than its extension, but equal to it; for the extremities of things which touch are coincident." (Aristotle, "Physics", cca. 350 BC)

"Conscious apprehension seems to exist […] as happens in a mirror-image when the smooth and bright surface is peaceful." (Plotinus, "Enneads", cca. 270 AD)

"Do not hover always on the surface of things, nor take up suddenly with mere appearances; but penetrate into the depth of matters, as far as your time and circumstances allow, especially in those things which relate to your profession." (Isaac Watts, "The Improvement of the Mind: Or, A Supplement to the Art of Logic", 1741)

"When a power of nature, invisible and impalpable, is the subject of scientific inquiry, it is necessary, if we would comprehend its essence and properties, to study its manifestations and effects. For this purpose simple observation is insufficient, since error always lies on the surface, whilst truth must be sought in deeper regions." (Justus von Liebig," Familiar Letters on Chemistry", 1859)

"Phenomena may well be suspected of anything, are capable of anything. Hypothesis proclaims the infinite; that is what gives hypothesis its greatness. Beneath the surface fact it seeks the real fact. It asks creation for her thoughts, and then for her second thoughts. The great scientific discoverers are those who hold nature suspect." (Victor Hugo, "The Toilers of the Sea", 1866)

"Scientific principles and laws do not lie on the surface of nature. They are hidden, and must be wrested from nature by an active and elaborate technique of inquiry." (John Dewey, "Reconstruction in Philosophy", 1920)

"In science there are no 'depths'; there is surface everywhere." (Rudolf Carnap, 1929)

"The present, as every schoolboy knows, is only the surface of the space-time sea, and a living spacewhale can dive beneath this surface and sojourn in times past, can return, if it so desires, to the primordial moment when the cosmos was born." (Robert F Young, "Starscape with Frieze of Dreams", 1970)

"Models are not intended to either reflect or construct a single objective reality. Rather, their purpose is to simulate some aspect of a possible reality. In NLP, for instance, it is not important whether or not a model is 'true' , but rather that it is 'useful' . In fact, all models can be perceived as symbolic or metaphoric, as opposed to reflective of reality. Whether the description being used is metaphorical or literal, the usefulness of a model depends on the degree to which it allows us to move effectively to the next step in the sequence of transformations connecting deeper structures and surface structures. Instead of 'constructing' reality, models establish a set of functions that serve as a tool or a bridge between deep structures and surface structures. It is this bridge that forms our 'understanding' of reality and allows us to generate new experiences and expressions of reality." (Richard Bandler & John Grinder, "The Structure of Magic", 1975)

"Prime numbers have always fascinated mathematicians, professional and amateur alike. They appear among the integers, seemingly at random, and yet not quite: there seems to be some order or pattern, just a little below the surface, just a little out of reach." (Underwood Dudley, "Elementary Number Theory", 1978)

"The immediate evidence from the natural world may seem to be chaotic and without any inner regularity, but mathematics reveals that under the surface the world of nature has an unexpected simplicity - an extraordinary beauty and order." (William Byers, "How Mathematicians Think", 2007)

"We don’t recognize how easy it is to generate hypotheses about the world. If we did, we’d generate fewer of them, or at least hold them more tentatively. We sprout causal theories in abundance when we learn of a correlation, and we readily find causal explanations for the failure of the world to confirm our hypotheses. We don’t realize how easy it is for us to explain away evidence that would seem on the surface to contradict our hypotheses. And we fail to generate tests of a hypothesis that could falsify the hypothesis if in fact the hypothesis is wrong. This is one type of confirmation bias." (Richard E Nisbett, "Mindware: Tools for Smart Thinking", 2015)

"Knowing means to penetrate through the surface, in order to arrive at the roots, and hence the causes; knowing means to "see" reality in its nakedness. Knowing does not mean to be in the possession of the truth; it means to penetrate the surface and to strive critically and actively in order to approach truth ever more closely." (Erich Fromm, "Fascism, Power, and Individual Rights", 2017)

Geometrical Figures VIII: Geodesics

"[...]  the illustration of a space of constant positive measure of curvature by the familiar example of the sphere is somewhat misleading.  Owing to the fact that on the sphere the geodesic lines (great circles) issuing from any point all meet again in another definite point, antipodal, so to speak, to the original point, the existence of such an antipodal point has sometimes been regarded as a necessary consequence of the assumption of a constant positive curvature. The projective theory of non-Euclidean space shows immediately that the existence of an antipodal point, though compatible with the nature of an elliptic space, is not necessary, but that two geodesic lines in such a space may intersect in one point if at all." (Felix Klein, "The Most Recent Researches in Non-Euclidian Geometry", [lecture] 1893)

"Imagine the forehead of a bull, with the protuberances from which the horns and ears start, and with the collars hollowed out between these protuberances; but elongate these horns and ears without limit so that they extend to infinity; then you will have one of the surfaces we wish to study. On such a surface geodesics may show many different aspects. There are, first of all, geodesics which close on themselves. There are some also which are never infinitely distant from their starting point even though they never exactly pass through it again; some turn continually around the right horn, others around the left horn, or right ear, or left ear; others, more complicated, alternate, in accordance with certain rules, the turns they describe around one horn with the turns they describe around the other horn, or around one of the ears. Finally, on the forehead of our bull with his unlimited horns and ears there will be geodesics going to infinity, some mounting the right horn, others mounting the left horn, and still others following the right or left ear. [...] If, therefore, a material point is thrown on the surface studied starting from a geometrically given position with a geometrically given velocity, mathematical deduction can determine the trajectory of this point and tell whether this path goes to infinity or not. But, for the physicist, this deduction is forever useless. When, indeed, the data are no longer known geometrically, but are determined by physical procedures as precise as we may suppose, the question put remains and will always remain unanswered." (Pierre-Maurice-Marie Duhem, "La théorie physique. Son objet, sa structure", 1906)

"Any region of space-time that has no gravitating mass in its vicinity is uncurved, so that the geodesics here are straight lines, which means that particles move in straight courses at uniform speeds (Newton's first law). But the world-lines of planets, comets and terrestrial projectiles are geodesics in a region of space-time which is curved by the proximity of the sun or earth. […] No force of gravitation is […] needed to impress curvature on world-lines; the curvature is inherent in the space […]" (James H Jeans," The Growth of Physical Science", 1947)

"Mathematics is an infinity of flexibles forcing pure thought into a cosmos. It is an arc of austerity cutting realms of reason with geodesic grandeur.." (Cletus O Oakley, "Mathematics", The American Mathematical Monthly, 1949)

"Bodies like the earth are not made to move on curved orbits by a force called gravity; instead, they follow the nearest thing to a straight path in a curved space, which is called a geodesic. A geodesic is the shortest (or longest) path between two nearby points." (Stephen Hawking, "A Brief History of Time", 1988)

"General relativity explains gravitation as a curvature, or bending, or warping, of the geometry of space-time, produced by the presence of matter. Free fall in a space shuttle around Earth, where space is warped, produces weightlessness, and is equivalent from the observer's point of view to freely moving in empty space where there is no large massive body producing curvature. In free fall we move along a 'geodesic' in the curved space-time, which is essentially a straight-line motion over small distances. But it becomes a curved trajectory when viewed at large distances. This is what produces the closed elliptical orbits of planets, with tiny corrections that have been correctly predicted and measured. Planets in orbits are actually in free fall in a curved space-time!" (Leon M Lederman & Christopher T Hill, "Symmetry and the Beautiful Universe", 2004)

Geometrical Figures VII: Surfaces

"In order to know the curvature of a curve, the determination of the radius of the osculating circle furnishes us the best measure, where for each point of the curve we find a circle whose curvature is precisely the same. However, when one looks for the curvature of a surface, the question is very equivocal and not at all susceptible to an absolute response, as in the case above. There are only spherical surfaces where one would be able to measure the curvature, assuming the curvature of the sphere is the curvature of its great circles, and whose radius could be considered the appropriate measure. But for other surfaces one doesn’t know even how to compare a surface with a sphere, as when one can always compare the curvature of a curve with that of a circle. The reason is evident, since at each point of a surface there are an infinite number of different curvatures. One has to only consider a cylinder, where along the directions parallel to the axis, there is no curvature, whereas in the directions perpendicular to the axis, which are circles, the curvatures are all the same, and all other oblique sections to the axis give a particular curvature. It’s the same for all other surfaces, where it can happen that in one direction the curvature is convex, and in another it is concave, as in those resembling a saddle." (Leonhard Euler, "Recherches sur la courbure des surfaces", 1767)

"I take the word 'mapping' in the widest possible sense; any point of the spherical surface is represented on the plane by any desired rule, so that every point of the sphere corresponds to a specified point in the plane, and inversely." (Leonhard Euler, "On the representation of Spherical Surfaces onto the Plane", 1777)

"The analytical equations, unknown to the ancient geometers, which Descartes was the first to introduce into the study of curves and surfaces, are not restricted to the properties of figures, and to those properties which are the object of rational mechanics; they extend to all general phenomena. There cannot be a language more universal and more simple, more free from errors and from obscurities, that is to say more worthy to express the invariable relations of natural things." (Jean-Baptiste-Joseph Fourier, "The Analytical Theory of Heat", 1822)

"The integrals which we have obtained are not only general expressions which satisfy the differential equation, they represent in the most distinct manner the natural effect which is the object of the phenomenon [...] when this condition is fulfilled, the integral is, properly speaking, the equation of the phenomenon; it expresses clearly the character and progress of it, in the same manner as the finite equation of a line or curved surface makes known all the properties of those forms." (Jean-Baptiste-Joseph Fourier, "Théorie Analytique de la Chaleur", 1822)

"In the extension of space-construction to the infinitely great, we must distinguish between unboundedness and infinite extent; the former belongs to the extent relations, the latter to the measure-relations. That space is an unbounded threefold manifoldness, is an assumption which is developed by every conception of the outer world; according to which every instant the region of real perception is completed and the possible positions of a sought object are constructed, and which by these applications is forever confirming itself. The unboundedness of space possesses in this way a greater empirical certainty than any external experience. But its infinite extent by no means follows from this; on the other hand if we assume independence of bodies from position, and therefore ascribe to space constant curvature, it must necessarily be finite provided this curvature has ever so small a positive value. If we prolong all the geodesies starting in a given surface-element, we should obtain an unbounded surface of constant curvature, i.e., a surface which in a flat manifoldness of three dimensions would take the form of a sphere, and consequently be finite." (Bernhard Riemann, "On the hypotheses which lie at the foundation of geometry", 1854)

"When we consider complex numbers and their geometrical representation, we leave the field of the original concept of quantity, as contained especially in the quantities of Euclidean geometry: its lines, surfaces and volumes. According to the old conception, length appears as something material which fills the straight line between its end points and at the same time prevents another thing from penetrating into its space by its rigidity. In adding quantities, we are therefore forced to place one quantity against another. Something similar holds for surfaces and solid contents. The introduction of negative quantities made a dent in this conception, and imaginary quantities made it completely impossible. Now all that matters is the point of origin and the end point; whether there is a continuous line between them, and if so which, appears to make no difference whatsoever; the idea of filling space has been completely lost. All that has remained is certain general properties of addition, which now emerge as the essential characteristic marks of quantity. The concept has thus gradually freed itself from intuition and made itself independent. This is quite unobjectionable, especially since its earlier intuitive character was at bottom mere appearance. Bounded straight lines and planes enclosed by curves can certainly be intuited, but what is quantitative about them, what is common to lengths and surfaces, escapes our intuition." (Gottlob Frege, "Methods of Calculation based on an Extension of the Concept of Quantity", 1874)

"Instead of the points of a line, plane, space, or any manifold under investigation, we may use instead any figure contained within the manifold: a group of points, curve, surface, etc. As there is nothing at all determined at the outset about the number of arbitrary parameters upon which these figures should depend, the number of dimensions of the line, plane, space, etc. is likewise arbitrary and depends only on the choice of space element. But so long as we base our geometrical investigation on the same group of transformations, the geometrical content remains unchanged. That is, every theorem resulting from one choice of space element will also be a theorem under any other choice; only the arrangement and correlation of the theorems will be changed. The essential thing is thus the group of transformations; the number of dimensions to be assigned to a manifold is only of secondary importance." (Felix Klein, "A comparative review of recent researches in geometry", Bulletin of the American Mathematoical Society 2(10), 1893)

"Imagine the forehead of a bull, with the protuberances from which the horns and ears start, and with the collars hollowed out between these protuberances; but elongate these horns and ears without limit so that they extend to infinity; then you will have one of the surfaces we wish to study. On such a surface geodesics may show many different aspects. There are, first of all, geodesics which close on themselves. There are some also which are never infinitely distant from their starting point even though they never exactly pass through it again; some turn continually around the right horn, others around the left horn, or right ear, or left ear; others, more complicated, alternate, in accordance with certain rules, the turns they describe around one horn with the turns they describe around the other horn, or around one of the ears. Finally, on the forehead of our bull with his unlimited horns and ears there will be geodesics going to infinity, some mounting the right horn, others mounting the left horn, and still others following the right or left ear. [...] If, therefore, a material point is thrown on the surface studied starting from a geometrically given position with a geometrically given velocity, mathematical deduction can determine the trajectory of this point and tell whether this path goes to infinity or not. But, for the physicist, this deduction is forever useless. When, indeed, the data are no longer known geometrically, but are determined by physical procedures as precise as we may suppose, the question put remains and will always remain unanswered." (Pierre-Maurice-Marie Duhem, "La théorie physique. Son objet, sa structure", 1906)

"But it is a third geometry from which quantity is completely excluded and which is purely qualitative; this is analysis situs. In this discipline, two figures are equivalent whenever one can pass from one to the other by a continuous deformation; whatever else the law of this deformation may be, it must be continuous. Thus, a circle is equivalent to an ellipse or even to an arbitrary closed curve, but it is not equivalent to a straight-line segment since this segment is not closed. A sphere is equivalent to any convex surface; it is not equivalent to a torus since there is a hole in a torus and in a sphere there is not. Imagine an arbitrary design and a copy of this same design executed by an unskilled draftsman; the properties are altered, the straight lines drawn by an inexperienced hand have suffered unfortunate deviations and contain awkward bends. From the point of view of metric geometry, and even of projective geometry, the two figures are not equivalent; on the contrary, from the point of view of analysis situs, they are." (Henri Poincaré, "Dernières pensées", 1913)

"Two Riemann surfaces which can be mapped conformally onto each other are (conformally) equivalent and are to be regarded as different representations of one and the same ideal Riemann surface. The intrinsic properties of a Riemann surface will include only those properties which are invariant under conformal maps; that is, those properties which, if possessed by one Riemann surface are possessed by every equivalent surface. Obviously all topological properties are intrinsic properties of a Riemann surface; similarly with those properties belonging to the surface by virtue of its smoothness." (Hermann Weyl, "The Concept of a Riemann Surface", 1913)

"We frequently find that nature acts in such a way as to minimize certain magnitudes. The soap film will take the shape of a surface of smallest area. Light always follows the shortest path, that is, the straight line, and, even when reflected or broken, follows a path which takes a minimum of time. In mechanical systems we find that the movements actually take place in a form which requires less effort in a certain sense than any other possible movement would use. There was a period, about 150 years ago, when physicists believed that the whole of physics might be deduced from certain minimizing principles, subject to calculus of variations, and these principles were interpreted as tendencies--so to say, economical tendencies of nature. Nature seems to follow the tendency of economizing certain magnitudes, of obtaining maximum effects with given means, or to spend minimal means for given effects." (Karl Menger, "What Is Calculus of Variations and What Are Its Applications?" [James R Newman, "The World of Mathematics" Vol. II], 1956)

"While the minimum and maximum problems of calculus of variations correspond to the problem in the ordinary calculus of finding peaks and pits of a surface, the minimax problems correspond to the problem of finding the saddle points of the surface (the passes of a mountain)."(Karl Menger, "What Is Calculus of Variations and What Are Its Applications?" [James R Newman, "The World of Mathematics" Vol. II], 1956)

"The mathematical models for many physical systems have manifolds as the basic objects of study, upon which further structure may be defined to obtain whatever system is in question. The concept generalizes and includes the special cases of the cartesian line, plane, space, and the surfaces which are studied in advanced calculus. The theory of these spaces which generalizes to manifolds includes the ideas of differentiable functions, smooth curves, tangent vectors, and vector fields. However, the notions of distance between points and straight lines (or shortest paths) are not part of the idea of a manifold but arise as consequences of additional structure, which may or may not be assumed and in any case is not unique." (Richard L Bishop & Samuel I Goldberg, "Tensor Analysis on Manifolds", 1968)

"Pure mathematics are concerned only with abstract propositions, and have nothing to do with the realities of nature. There is no such thing in actual existence as a mathematical point, line or surface. There is no such thing as a circle or square. But that is of no consequence. We can define them in words, and reason about them. We can draw a diagram, and suppose that line to be straight which is not really straight, and that figure to be a circle which is not strictly a circle. It is conceived therefore by the generality of observers, that mathematics is the science of certainty." (William Godwin, "Thoughts on Man", 1969)

"Maximum and minimum always exist together: if our cup-like surface is turned over, we get a cap, in which the highest point (maximum) corresponds to the lowest point of the cup (minimum). By climbing to the uppermost peak of a mountain we can find ourselves (via reflection in a nearby lake) in the lowest point of the valley below. Here, the mathematician calmly reasons to within an accuracy that amounts to the opposite, so to say, for if we find a maximum and then view the situation from another angle, we see a minimum. The answer thus depends solely on how we view the surface. That is why we always speak of seeking an extremum and not, separately, a maximum or a minimum." (Yakov Khurgin, "Did You Say Mathematics?", 1974)

"[...] if the behavior points for the entire control surface are plotted and then connected, they form a smooth surface: the behavior surface. The surface has an overall slope from high values where rage predominates to low values in the region where fear is the prevailing state of mind, but the slope is not its most distinctive feature. Catastrophe theory reveals that in the middle of the surface there must be a smooth double fold, creating a pleat without creases, which grows narrower from the front of the surface to the back and eventually disappears in a singular point where the three sheets of the pleat come together. It is the pleat that gives the model its most interesting characteristics. All the points on the behavior surface represent the most probable behavior [...], with the exception of those on the middle sheet, which represent least probable behavior. Through catastrophe theory we can deduce the shape of the entire surface from the fact that the behavior is bimodal for some control points." (E Cristopher Zeeman, "Catastrophe Theory", Scientific American, 1976)

"Because of its foundation in topology, catastrophe theory is qualitative, not quantitative. Just as geometry treated the properties of a triangle without regard to its size, so topology deals with properties that have no magnitude, for example, the property of a given point being inside or outside a closed curve or surface. This property is what topologists call 'invariant' -it does not change even when the curve is distorted. A topologist may work with seven-dimensional space, but he does not and cannot measure (in the ordinary sense) along any of those dimensions. The ability to classify and manipulate all types of form is achieved only by giving up concepts such as size, distance, and rate. So while catastrophe theory is well suited to describe and even to predict the shape of processes, its descriptions and predictions are not quantitative like those of theories built upon calculus. Instead, they are rather like maps without a scale: they tell us that there are mountains to the left, a river to the right, and a cliff somewhere ahead, but not how far away each is, or how large." (Alexander Woodcock & Monte Davis, "Catastrophe Theory", 1978)

"The space of our universe is the hypersurface of a vast expanding hypersphere." (Rudy Rucker, "The Sex Sphere", 1983)

"Linking topology and dynamical systems is the possibility of using a shape to help visualize the whole range of behaviors of a system. For a simple system, the shape might be some kind of curved surface; for a complicated system, a manifold of many dimensions. A single point on such a surface represents the state of a system at an instant frozen in time. As a system progresses through time, the point moves, tracing an orbit across this surface. Bending the shape a little corresponds to changing the system's parameters, making a fluid more visous or driving a pendulum a little harder. Shapes that look roughly the same give roughly the same kinds of behavior. If you can visualize the shape, you can understand the system." (James Gleick, "Chaos: Making a New Science", 1987)

"First, strange attractors look strange: they are not smooth curves or surfaces but have 'non-integer dimension' - or, as Benoit Mandelbrot puts it, they are fractal objects. Next, and more importantly, the motion on a strange attractor has sensitive dependence on initial condition. Finally, while strange attractors have only finite dimension, the time-frequency analysis reveals a continuum of frequencies." (David Ruelle, "Chance and Chaos", 1991)

"Three laws governing black hole changes were thus found, but it was soon noticed that something unusual was going on. If one merely replaced the words 'surface area' by 'entropy' and 'gravitational field' by 'temperature', then the laws of black hole changes became merely statements of the laws of thermodynamics. The rule that the horizon surface areas can never decrease in physical processes becomes the second law of thermodynamics that the entropy can never decrease; the constancy of the gravitational field around the horizon is the so-called zeroth law of thermodynamics that the temperature must be the same everywhere in a state of thermal equilibrium. The rule linking allowed changes in the defining quantities of the black hole just becomes the first law of thermodynamics, which is more commonly known as the conservation of energy." (John D Barrow, "Theories of Everything: The Quest for Ultimate Explanation", 1991)

"An attractor that consists of an infinite number of curves, surfaces, or higher-dimensional manifolds - generalizations of surfaces to multidimensional space - often occurring in parallel sets, with a gap between any two members of the set, is called a strange attractor." (Edward N Lorenz, "The Essence of Chaos", 1993)

"Topology deals with those properties of curves, surfaces, and more general aggregates of points that are not changed by continuous stretching, squeezing, or bending. To a topologist, a circle and a square are the same, because either one can easily be bent into the shape of the other. In three dimensions, a circle and a closed curve with an overhand knot in it are topologically different, because no amount of bending, squeezing, or stretching will remove the knot." (Edward N Lorenz, "The Essence of Chaos", 1993)

"Geometrical intuition plays an essential role in contemporary algebro-topological and geometric studies. Many profound scientific mathematical papers devoted to multi-dimensional geometry use intensively the 'visual slang' such as, say, 'cut the surface', 'glue together the strips', 'glue the cylinder', 'evert the sphere' , etc., typical of the studies of two and three-dimensional images. Such a terminology is not a caprice of mathematicians, but rather a 'practical necessity' since its employment and the mathematical thinking in these terms appear to be quite necessary for the proof of technically very sophisticated results."(Anatolij Fomenko, "Visual Geometry and Topology", 1994)

"Roughly speaking, manifolds are geometrical objects obtained by glueing open discs (balls) like a papier-mache is glued of small paper scraps. To this end, one first prepares a clay or plastecine figure which is then covered with several sheets of paper scraps glued onto one another. After the plasticine is removed, there remains a two-dimensional surface." (Anatolij Fomenko, "Visual Geometry and Topology", 1994)

"As with subtle bifurcations, catastrophes also involve a control parameter. When the value of that parameter is below a bifurcation point, the system is dominated by one attractor. When the value of that parameter is above the bifurcation point, another attractor dominates. Thus the fundamental characteristic of a catastrophe is the sudden disappearance of one attractor and its basin, combined with the dominant emergence of another attractor. Any type of attractor static, periodic, or chaotic can be involved in this. Elementary catastrophe theory involves static attractors, such as points. Because multidimensional surfaces can also attract (together with attracting points on these surfaces), we refer to them more generally as attracting hypersurfaces, limit sets, or simply attractors." (Courtney Brown, "Chaos and Catastrophe Theories", 1995)

"Since geometry is the mathematical idealization of space, a natural way to organize its study is by dimension. First we have points, objects of dimension O. Then come lines and curves, which are one-dimensional objects, followed by two-dimensional surfaces, and so on. A collection of such objects from a given dimension forms what mathematicians call a 'space'. And if there is some notion enabling us to say when two objects are 'nearby' in such a space, then it's called a topological space." (John L Casti, "Five Golden Rules", 1995)

"What's important about a saddle point is that it represents a decision by the two players that neither can improve upon by unilaterally departing from it. In short, either player can announce such a choice in advance to the other player and suffer no penalty by doing so. Consequently, the best choice for each player is at the saddle point, which is called a 'solution' to the game in pure strategies. This is because regardless of the number of times the game is played, the optimal choice for each player is to always take his or her saddle-point decision. […] the saddle point is at the same time the highest point on the payoff surface in one direction and the lowest in the other direction. Put in algebraic terms using the payoff matrix, the saddle point is where the largest of the row minima coincides with the smallest of the column maxima." (John L Casti, "Five Golden Rules", 1995)

"Differentiability of a function can be established by examining the behavior of the function in the immediate neighborhood of a single point a in its domain. Thus, all we need is coordinates in the vicinity of the point a. From this point of view, one might say that local coordinates have more essential qualities. However, if are not looking at individual surfaces, we cannot find a more general and universal notion than smoothness." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"It is commonly said that the study of manifolds is, in general, the study of the generalization of the concept of surfaces. To some extent, this is true. However, defining it that way can lead to overshadowing by 'figures' such as geometrical surfaces." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"The best example to indicate the rigidity of analytic functions is a soap film (with little viscosity) on a wire frame (think of a bubble blower). The soap film, which is created by the surface tension, stretches across the wire frame and is known to have analyticity. Therefore, if we try to change a certain region of the film by tapping it with a stick, then the film loses analyticity and will immediately brake." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"Particular landforms or surface morphologies may be generated, in some cases, by several different processes, sets of environmental controls, or developmental histories. This convergence to similar forms despite variations in processes and controls is called equifinality." (Jonathan Phillips, "Simplexity and the Reinvention of Equifinality", Geographical Analysis Vol. 29 (1), 1997)

"Algebraic topology studies properties of a narrower class of spaces, - basically the classical objects of mathematics: spaces given by systems of algebraic and functional equations, surfaces lying in Euclidean space, and other sets which in mathematics are called manifolds. Examining the narrower class of spaces permits deeper penetration into their structure." (Michael I Monastyrsky, "Riemann, Topology, and Physics", 1999)

"Replacing particles by strings is a naive-sounding step, from which many other things follow. In fact, replacing Feynman graphs by Riemann surfaces has numerous consequences: 1. It eliminates the infinities from the theory. [...] 2. It greatly reduces the number of possible theories. [...] 3. It gives the first hint that string theory will change our notions of spacetime." (Edward Witten, "The Past and Future of String Theory", 2003)

"Wherever we look in our world the complex systems of nature and time seem to preserve the look of details at finer and finer scales. Fractals show a holistic hidden order behind things, a harmony in which everything affects everything else, and, above all, an endless variety of interwoven patterns. Fractal geometry allows bounded curves of infinite length, as well as closed surfaces with infinite area. It even allows curves with positive volume and arbitrarily large groups of shapes with exactly the same boundary." (Philip Tetlow, "The Web’s Awake: An Introduction to the Field of Web Science and the Concept of Web Life", 2007)

"For unqualified adequacy of the theory, what is required is that the surface models of phenomena fit properly with or into the theoretical models. The surface models will provide probability functions for events that are classified as outcomes in situations classified as measurements of given observables."  (Bas C van Fraassen, "Scientific Representation: Paradoxes of Perspective", 2008)

"Scientific theories represent how things are, doing so mainly by presenting a range of models as candidate representations of the phenomena. [...] A theory provides, in essence, a set of models. The 'in essence' signals much that must be delicately expanded and qualified; [...] These models - the theoretical models - are provided in the first instance to fit observed and observable phenomena. Since the description of these phenomena is in practice already by means of models - the ‘data models’ or ‘surface models’, we can put the requirement as follows: the data or surface models must ideally be isomorphically embeddable in theoretical models."  (Bas C van Fraassen, "Scientific Representation: Paradoxes of Perspective", 2008)

"The observable phenomenon makes its appearance to us first of all in the outcome of a specific measurement, or large set of such measurements - or at slight remove, in a data model constructed from these individual outcomes, or at a slightly further remove yet, in the surface model constructed by extrapolating the patterns in the data model to something finer than our instruments can register."  (Bas C van Fraassen, "Scientific Representation: Paradoxes of Perspective", 2008)

"Geometric pattern repeated at progressively smaller scales, where each iteration is about a reproduction of the image to produce completely irregular shapes and surfaces that can not be represented by classical geometry. Fractals are generally self-similar (each section looks at all) and are not subordinated to a specific scale. They are used especially in the digital modeling of irregular patterns and structures in nature." (Mauro Chiarella, "Folds and Refolds: Space Generation, Shapes, and Complex Components", 2016)

"The true traditional doughnut has the topology of a sphere. It is a matter of taste whether one regards this as having separate internal and external surfaces. The important point is that the inner space should be filled with good raspberry jam. This is also a matter of taste." (Peter B Fellgett)

Related Posts Plugin for WordPress, Blogger...

On Leonhard Euler

"I have been able to solve a few problems of mathematical physics on which the greatest mathematicians since Euler have struggled in va...